Path Integrals Without Integrals”

Antun Balaz! Ivana Vidanovié, Aleksandar Bogojevié

Scientific Computing Laboratory, Institute of Physics Belgrade
University of Belgrade, Pregrevica 118, 11080 Belgrade, SERBIA

Axel Pelster

Fachbereich Physik, Universitat Duisburg-Essen
Lotharstrafie 1, 47048 Duisburg, GERMANY

ABSTRACT

Recently, we have developed an efficient recursive approach for an-
alytically calculating the short-time expansion of the propagator to
extremely high orders for a general many-body quantum system. Here
we give brief overview of this approach and then demonstrate applica-
tion of this technique by numerically studying the thermodynamical
properties of a rotating ideal Bose gas of 8”Rb atoms in an anharmonic
trap. The obtained results improve previous semiclassical calculations
and agree well with Path Integral Monte Carlo simulations.

1. Introduction

The central object in the path-integral formulation of quantum statistics

is the (Euclidean) transition amplitude A(a,b;t) = <b]e_“q\a> 1, 2, 3, 4].
The starting point in setting up this formalism is the completeness relation

Ala,bi ) = / dqy - / dav_1 Ala,qse) - Algy_1,bie), (1)

where ¢ = t/N denotes the time-slice width. To leading order in ¢ the
short-time transition amplitude reads in natural units

. _ (Qn—i-l - Qn)2
A(QanHﬁ) = WGXP —T - €V($n) ) (2)
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where the potential V' is evaluated at the mid-point coordinate z,, = (¢, +
gn+1)/2. Substituting (2) in the completeness relation (1), the deviation of
the obtained discrete amplitude from the continuum result turns out to be
of the order O(g). This slow convergence to the continuum is the major
reason for the low efficiency of the ubiquitous Path Integral Monte Carlo
simulations [5], especially in numeric studies of Bose-Einstein condensation
phenomena [6, 7, 8], quantum phase transitions and phase diagrams at low
temperatures [9, 10]. Thus, in order to accelerate numerical calculations for
statistical properties of quantum systems, it is necessary to develop more
efficient algorithms. The existence of such algorithms has been established
recently [11].

To this end we worked out and numerically verified in a series of recent
papers [12, 13, 14, 15] an efficient analytical procedure for improving the
convergence of path integrals for single-particle transition amplitudes to
the order O(eP) for arbitrary values of p. This was achieved by studying
how discretizations of different coarseness are related to a hierarchy of ef-
fective discrete-time actions which improve the convergence in a systematic
way. In Ref. [16] we presented an equivalent approach which is based on
a direct path-integral calculation of intermediate time amplitudes to the
order O(gP). It turned out that increasing p leads to an exponential rise
in complexity of the effective actions which, ultimately, limits the maximal
value of p one can practically work with. These limitations of existing ap-
proaches, in particular in the case of many-body theories, are still below
the calculational barrier stemming from this rise in complexity. This is a
strong indication that new and more efficient calculational schemes must
exist which should considerably improve the convergence of path integrals
for general many-body theories. The availability of analytic expressions for
higher p effective actions is essential for numerical calculations of path in-
tegrals with high precision. Obtaining the information on energy spectra is
just one important example of calculations that require high-precision nu-
merical results. Furthermore, since the structure of higher order terms of
effective actions is governed by the quantum dynamics of the system, it can
be used for extracting analytical information about the system properties.

As is well known, in concrete calculations it is always easier to solve the
underlying Schrédinger equation than to directly evaluate the correspond-
ing path integral. For instance, in the case of particular potentials the
Schrodinger equation approach allows an efficient recursive scheme to cal-
culate perturbation series up to very high orders [17, 18, 19, 20, 21]. With
this in mind, we have developed a new and more efficient recursive ap-
proach for deriving the short-time transition amplitude from the underly-
ing Schrédinger equation [22]. In this paper we give an overview of this
approach for one- and many-body quantum systems and then illustrate its
application in the case of numerical study of properties of fast rotating
Bose-Einstein condensates [23].

The paper is organized as follows: Section 2 presents the instructive case
of a single one-dimensional particle moving in a general potential, while in
Section 3 we extend these results to the case of a general many-body theory
in d dimensions. The application of this approach to numerical calculation
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of energy eigenstates and eigenfunctions by direct diagonalization of the
space-discretized matrix of the evolution operator is presented in Section
4. Numerical study of properties of Bose-Einstein condensates in anhar-
monic traps is given in Section 5, where global and local properties such
as condensation temperature, density profiles and time-of-flight absorption
images are calculated for the case of fast-rotating 8’Rb condensate. Section
6 gives short summary of presented results and outlook for future research.

2. One particle in One Dimension

We start with calculating the transition amplitude A(q, ¢’; €) for one particle
in one dimension. It obeys the symmetry

Alq,q'se) = A(d q;¢) (3)
and satisfies the time-dependent Schrédinger equations
o 102
— — ===+ V(q)| Alg,¢;¢) =0 4
- g V] Ao =0, (@)
o 1 9? ,
Ly _“ A roy —
b o H V)| Al =0 )
with the initial condition
A(g,q0) =d(q— ). (6)
In terms of the deviation T = (¢’ — ¢)/2 and the mid-point coordinate
z = (q+ q¢')/2, both equations are rewritten according to
0 1., 1. 1
~ _ZH - "V A=
L% 88 88 +2(V++V)} 0, (7)
[—00+2(V.—-V_)]A=0, (8)

where we have introduced Vi = V(z£Z) as an abbreviation. Their solution
may be written in the form

1
\V2me

where the effective potential W (x, Z; ) is an even function of & due to the
symmetry (3) of the Euclidean transition amplitude. Note that Eq. (2)
represents an approximation to the exact form (9) up to order O(g). Sub-
stituting (9) in (7) and (8) yields

A=

exp [—i 72— sW(x,:z;e)] , )

_ 1 _
W+E8W+585W—§582W—é562w+
1 1, - 1
3 e2 (OW)? + 3 2 (OW)? = 5 VeV, (10)
1 - 1 _ 1
5:8W—1588W+1528W6W:§(V+—V_). (11)
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Both partial differential equations completely determine the effective po-
tential W (z, Z;¢) and thus the transition amplitude A(q, ¢’;€). The initial
condition (6) implies that W is regular in the vicinity of e = 0, ie. it
may be expanded in a power series in €. We are interested in using W
to systematically speed up the convergence of discrete amplitudes with N
time slices to the continuum limit. This is done by evaluating W to higher
powers in . According to Eq. (2) the dominant term for the short-time
propagation is the diffusion relation Z2 o ¢. Therefore, we expand W in a
double power series in both ¢ and z2:

W, ze) = > > cmp(z)e™ Fa?h (12)

m=0 k=0

Restricting the sum over m from 0 to p—1 leads to a discrete amplitude that
converges to the continuum result as €, i.e. as 1/NP. For later convenience
we define all coefficients ¢, 5, which are not explicitly used in Eq. (12), to
be zero, i.e. we set ¢, ;; = 0 whenever the condition m > k > 0 is not
satisfied.

Substituting the expansion (12) into the partial differential equations (10)
and (11) leads to two equivalent recursion relations. The second recursion
relation turns out to be more difficult to solve to higher orders as it directly
determines not the coefficients ¢, ;(x) but their first derivatives. For this
reason we restrict ourselves in the remainder of this section to the recursion
relation following from Eq. (10). The diagonal coefficients are given by

v (@m)

mm = 75 . 4N 1
Cmm = (5 4 1)1 (13)

while off-diagonal coefficients satisfy the recursion relation

8(m+k+1)cmp = (2k+2)(2k + 1) crmpr1 + o1 p —

m—2 m—2
D o Cnicogr — Y 272k =2+ 2) iy i1 krp1 (14)
=0 r =1 r

where the sum over r goes from max{0,k —m + [ + 2} to min{k,{} in
accordance with the restriction that c,, = 0 whenever the condition m >
k > 0 is not satisfied. For a given value of m, the coefficients ¢, j for

k= 0,1,...,m are determined as follows. The diagonal coefficient ¢, y,
is directly given by (13), whereas the off-diagonal coefficients c,, ; follow
recursively from evaluating (14) for k=m —1,...,1,0.

We have automatized this procedure [24] and implemented it using the
Mathematica 7 package [25] for symbolic calculus. Although the effective
actions grow in complexity with level p, the Schrédinger equation method
for calculating the discrete-time effective actions turns out to be extremely
efficient. The whole technique can be pushed much further when working
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on specific potential classes. The increase in level and the decrease in
size of the expressions for the effective actions originate from functional
relations between the potential and its derivatives. These relations are
particularly simple in the case of polynomial interactions where all the
derivatives of the potential above a certain degree vanish. However, the
benefits of working within a specific class of potentials are not only limited
to polynomial interactions.

As already stated, the principal rationale behind constructing high-level
effective actions is to use them for speeding up Monte Carlo calculations.
However, having obtained explicit expressions for effective actions to such
high levels, it now becomes possible to use them extensively in both nu-
merical and analytical calculations.

The derived effective actions can also be applied to systematically improve
the Numerical Matrix Diagonalization (NMD) method [26, 27, 28] for cal-
culating energy eigenvalues and eigenstates. Note that the propagation
time ¢ used in the NMD method is just a parameter which is chosen in
such a way that it minimizes the error associated with the calculated en-
ergy eigenvalues. Therefore, it is always possible to select this parameter
to be small, so that the obtained expansion of the ideal effective action
can be used to substantially improve NMD calculations. Furthermore, in
this case we can even use analytic N = 1 approximation for the path in-
tegral. In this approximation there are no integrals to perform in Eq. (1)
and the amplitude is directly given by the analytic expression (9). Using
such extremely rough discretizations is only possible if one has determined
the ideal effective action to very high orders p. In effect, one compensates
without loss of precision the increase of discretization coarseness with the
input of new analytical information concerning the propagation time which
is contained in the effective action. In this way, without any integration or
resummation techniques, we can calculate large number of highly accurate
energy eigenvalues, avoiding the usually needed limit ¢ — oo which is diffi-
cult to approach. When this technique is possible to use, we refer to it as
N = 1 approximation to the path integral, or simply, calculation of path
integrals without integrals.

3. Many-Body Systems

Now we extend the calculations of Section 2 to the case of a general non-
relativistic theory of M particles in d dimensions. The derivation of the
equations for W proceeds completely parallel to the case of one particle in
one dimension. The Schrédinger equations now have the form

0 1= ,

§—§ZA1‘+V(Q) A(q,q'5¢) =0, (15)
=1

8 1 M / / /

&‘52&'?”/((1) Alg,q5¢) =0, (16)
=1
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where A; and Al stand for d-dimensional Laplacians over initial and final
coordinates of particle 7, while ¢ and ¢’ are d x M dimensional vectors
representing positions of all particles at the initial and final moment. Fur-
thermore, the potential V' contains both the external potential and the
respective interaction potentials between two and more particles. After
substituting the dM-dimensional generalization of the expression for the
transition amplitude (9) into the Schrédinger equations (15) and (16), we
find the direct analogues of Egs. (10) and (11) for the effective potential
W. Either of these two equations for W can be used to determine the
appropriate short-time expansion as a double Taylor series in powers of
and even powers of Z:

Wz, T;e) = iism’“w (z,7) , (17)

m=0 k=0

where W, (2, %) = T4 T4y - - xmc;ll’k’m (). It turns out to be advanta-
geous to use recursion relations for the fully contracted quantities Wy, j

7 ) . .
rather than the respective coefficients ¢,/ ’,”"**. In this way we can avoid

the computatlonally expensive symmetrlzatlon over all indices i1, ..., 9.
And again it is easier to work with the first of the two equations for W.
Substituting (17) into the equation for the effective potential directly yields
the diagonal coefficients

1

W, - -
T (2m 4 1)

(-9 V. (18)
The off-diagonal coefficients satisfy the recursion relation which represents
a generalization of Eq. (14):

8(m+k+1)Wyi =0* W1k + 0* Wi g1 —

Z Z [ (OW1) - (OW—i—2 —r) — (OW) - (5Wm—1—1,k—r+1)]- (19)

As before, the sum over r goes from max{0,k —m + [ + 2} to min{k,[}.
The above recursion disentangles, in complete analogy with the previously
outlined case of one particle in one dimension.

4. Numerical calculation of energy eigenvalues and eigen-
state

The approach presented in previous sections allows for an efficient and fast-
converging numerical calculation of all one-particle properties of quantum
systems [29, 30]. Note that this general numerical approach is suitable
to treat arbitrarily-shaped trap potentials and is also applicable for exact
studies of many-body problems. Here we consider the imaginary-time tran-

sition amplitude A(a,b;t) = (b|e*tH]a) for one particle system, where the
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time t is considered to be small. If we make use of the effective action
W®=1) calculated to t?~1, we can express this short-time amplitude as

AP (a,bt) = exp [— %j’? —t WP (g, t)} ; (20)

b
(27t )d/2

where, as before, z = (b — a)/2 and z = (a + b)/2. The amplitude is

designated by p due to the fact that W®—1 is multiplied by an additional
factor of ¢ in the exponent. This yields a result for the exponent which is
correct up to order tP, i.e. its error is proportional to tP*!. If we take into
account the pre-factor 1/(27t)%2, the above expression for the short time

amplitude A®) gives overall errors proportional to tPT1-4/2,

If we discretize the continuous space and replace it with a grid defined by a
discretization step A, all the quantities are defined only on a discrete set of
coordinates ¢, = nA in each dimension, where n € Z is any integer number.

For a physical system with Hamiltonian H, the evolution operator (in the

imaginary time formalism) is defined as exp(—tH), where ¢ is the time
of evolution. Transition amplitudes now define the discretized evolution
operator matrix elements,

Apm(t) = AL A(nA, mA;t), (21)

The eigenvectors of such a matrix correspond to the space-discretized eigen-
functions of the original Hamiltonian, while the eigenvalues are related to
the eigenvalues of the Hamiltonian and can be written as

e—tEk(A,L,t) , (22)

where we emphasize the dependence of the numerically calculated eigenval-
ues on all discretization parameters. The number of obtained eigenvalues
and eigenstates is equal to the linear size of matrix A, which has to be
finite when we represent any physical system on the computer. Typically,
we restrict the range of indices n, m to the finite interval —N <n,m < N,
so that the number of points in the grid is S = (2N)?. In Eq. (22) we have
also introduced the space cutoff L, which corresponds to the restriction
on the range of grid-point indices n,m, and is given by L = NA. When
eigenvalues are calculated this way using the amplitudes of the order p, the
appropriate errors due to the parameter ¢ are expected to be proportional
to tP, the same as for the effective potential. In order to illustrate this, we
study the quartic anharmonic oscillator with the potential

1 4 g 4
V(x) 2£U +24x (23)

Fig. 1 presents the analysis of various errors in the ground energy calcula-
tion for a particular choice of the parameter of the potential g = 48. The
spectrum of the potential is calculated by the numerical diagonalization of
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Figure 1: (a) Deviations from the ground energy |Eép> (A, L, t)— E§**!| as a function of
the space cutoff L and (b) as a function of the time ¢. The ground energy is obtained using
different levels p = 1,3,5,7,9, 11, 13 (top to bottom) of the effective action for the quartic
anharmonic potential, with parameters ¢ = 48, A = 0.05, ¢ = 0.02 on graph (a), and
L = 4 on graph (b). The exact ground energy E§**“* = 0.95156847272950001114693. ..
is taken from Ref. [31]. Dashed lines on the graph (b) correspond to the known dis-
cretization error [29].

the space-discretized transition amplitude matrix. The errors are estimated
using the exact value of the ground energy calculated elsewhere [31] by a
different technique to very high precision. The dependance of the error re-
lated to the introduction of the space cutoff L is illustrated in Fig. 1a, and
is analytically known [32, 33, 29, 30]. The saturation of errors in Fig. la
for a given level p corresponds to a maximal precision that can be achieved
with that p, i.e. denotes the value of L for which errors introduced by other
sources become larger than the error due to the finite value of the space
cutoff. Fig. 1b gives the dependence of ground energy errors on the time
of propagation parameter ¢ for various values of the discretization step A.
This graph clearly shows that the errors due to the time of propagation are
proportional to tP, as expected when we use level p effective action.

5. Fast Rotating Bose-Einstein Condensates

Bose-Einstein condensation (BEC) represents a macroscopic quantum phe-
nomenon of broad research interest [34]. Since its first experimental real-
ization in 1995, it has been extensively studied experimentally, analytically,
and numerically. The two main research directions are weakly-interacting
dilute gases in magneto-optical traps and strongly-interacting quantum
gases in optical lattices. The behavior of a Bose-Einstein condensate under
rotation is essential for understanding many fundamental BEC phenom-
ena. For instance, its response to rotation represents one of the seminal
hallmarks of superfluidity [35]. However, once a harmonically trapped Bose-
Einstein condensate is rotated critically, i.e. the rotation frequency becomes
so large that it compensates the radially confining harmonic frequency, the
system turns out to be radially no longer trapped. In the absence of addi-
tional potential terms the condensate would start to expand perpendicular
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to the rotation axis. For an overcritical rotation, this expansion would
even be accelerated by the presence of a residual centrifugal force. In or-
der to reach experimentally this delicate regime of critical or overcritical
rotation, Fetter suggested in Ref. [36] to add an additional quartic term to
the harmonic trap potential. Using a Gaussian laser beam propagating in
the z-direction, this has been realized experimentally in Paris by Dalibard
and co-workers for a BEC of 3-10° atoms of 8"Rb [37, 38]. The resulting
axially-symmetric trap with a small quartic anharmonicity in the zy-plane,
seen by individual atoms, has the form

M, M, k
VBEC = %(Wi — Q%) + %WEZQ + Zri , (24)

with the perpendicular radius r; = y/x2 + 32, as well as the trap frequen-
cies w| = 27 X 64.8 Hz, w, = 27 x 11.0 Hz, and the trap anharmonicity
k = kppc = 2.6 x 107" Jm~*. Furthermore, the rotation frequency €,
which is measured in units of w , i.e. it is expressed by the ratior = Q/w,,
represents the tunable control parameter which could be experimentally in-
creased up to r = 1.04. This highest possible rotation frequency seems to
coincide with an instability which follows from a Thomas-Fermi solution of
the Gross-Pitaevskii equation [39].

As long as we can ignore the presence of two-particle interactions and ap-
proximately describe the system with the ideal Bose gas, its many-particle
properties in the grand-canonical ensemble are exclusively derivable from
one-particle states. When considering the thermodynamic limit, usually the
semiclassical approximation is applied, where the one-particle ground state
Ey is retained and treated quantum mechanically, while all one-particles
states above Ej are approximately treated as a continuum [40]. This semi-
classical approximation remains reasonable good irrespective of the rotation
frequency €2 once the total particle number N is large enough and the trap
anharmonicity k£ small enough. The latter condition implies that the under-
lying one-particle potential (24) has a small curvature around its minimum.
However, in this context the question arises for which system parameters
such a semiclassical approximation is not sufficient for a precise description
of BEC phenomena, as well as when it finally breaks down, requiring a full
quantum mechanical treatment of the system.

In order to analyze this fundamental problem more quantitatively, it is
mandatory to precisely determine the one-particle energy eigenvalues and
eigenfunctions, which is ideal application of our effective action approach.

5.1. Ideal Bose Gas and Path Integral Approach for BEC

For high temperatures, the grand-canonical partition function of an ideal
Bose gas is given by Z =" e BEv=pNy) where v enumerates all possible
configurations of the system, 3 = 1/kpT represents the inverse tempera-
ture, and p denotes the chemical potential. As the ideal bosons do not
interact, the system energy E, can be expressed in terms of single-particle
energy eigenvalues as E, = ) Ny(n) En, where n counts single-particle
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energy states, while N,,,) = 0,1,2,... and Ej, stand for the occupancy and

the energy eigenvalue of level n, respectively. Correspondingly, the number
of particles in the system is N, = N, () Thus, the grand-canonical free

energy F = —(In Z) /3 results to be

_;;m[l_e—wn 0] = - Z

the usual cumulant expansion. Thus, the many-body thermodynamic po-
tential (25) of an ideal Bose gas is exclusively determined by single-particle

states via the one-particle partition function Z;(3) = Y e 9n.

)5 (25)

In principle, the above outlined exact calculation of the many-body free
energy allows a full numerical description of ideal Bose gases, and can be
also applied for studies of dilute Bose gases in the case when interactions are
negligible. However, it becomes numerically very involved even for simple
trapping potentials at low temperatures. In addition to this, the BEC phase
transition is achieved only in the thermodynamic limit of an infinite number
of atoms, thus making numerical studies of the condensation increasingly
difficult. Usually, this problem is solved by fixing the chemical potential
i at the low temperatures of the condensate phase to the ground-state
energy, i.e. by setting 4 = Ep, and to treat the ground state separately,
by explicitly taking into account its macroscopic occupation Ny. Thus, for
low enough temperatures the grand-canonical free energy (25) is modified
to
X ompu

F= 3 S [ Zi(mp) e 4 No(Ey ). (26)

ﬁm:l m

In order to avoid any double-counting, we have subtracted in the first line
the contribution of the ground state within the one-particle partition func-
tion, whereas the second line takes into account a possible macroscopic
occupation of the ground state. The resulting total number of particles
N = —0F/0u follows to be

N=No+ Y emo [Zl(mﬁ) _ e~mBBo] (27)

m=1

This particle number equation serves different purposes in the respective
phases. Within the gas phase, where the macroscopic occupation of the
ground state vanishes, i.e. we have Ny = 0, Eq. (27) determines the tem-
perature dependence of the chemical potential . On the other hand, within
the BEC phase the chemical potential i coincides with its minimal value,
i.e. the ground-state energy Ejy, so Eq. (27) yields the temperature depen-
dence of Ny. Therefore, the value of 5. = 1/kpT., which characterizes the
boundary between both phases, follows from Eq. (27) by setting Ny = 0
and p = FEy:

N=Y [ mBEo 7, (mB,) — 1 (28)

m=1
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The conclusion is that, for a given number N of ideal bosons, the condensa-
tion temperature can be exactly calculated only if both the single-particle
ground-state energy Fy and the full temperature dependence of the one-
particle partition function are known. This can be achieved by the numeri-
cal diagonalization of the one-particle Hamiltonian defined by the potential
(24), using the method described in Section 4.

Typical values of the inverse temperature 8 in BEC experiments are quite
small compared to the typical energy scale which is defined by the harmonic
trap frequencies. For example, in the Paris experiment [37] the dimension-

less value of hBw, ranges between 1073 and 10~!'. Therefore, one can

immediately use the above formula for the amplitude A®) and calculate
the corresponding one-particle partition function by numerically integrat-
ing the diagonal amplitude A(a,a,3) over the coordinate a. For small
enough [ the above formula converges rapidly, and the amplitudes can be
calculated exactly for all practical purposes, i.e. using the approximation
we refer to as path integrals without integrals.

However, the direct use of this approach has several disadvantages. First
of all, one still has to perform an integral over the diagonal coordinate a
in order to calculate the partition function. Second, this has to be done
repeatedly for each value of the inverse temperature 5. And most impor-
tantly, one has also to extract the value of the ground-state energy in view
of the particle number equation (27). In principle, this is done by studying
the high-3 regime, where the short-time expansion (20) is not valid. Al-
though this procedure works also for lower values of 3 [41], it requires the
numerical calculation of the one-particle partition function and a detailed
study of its dependence on the inverse temperature in order to obtain the
ground-state energy with sufficient precision. For this reason, the algorithm
becomes numerically complex and difficult to use, especially in cases where
the ground state is degenerate.

The approach based on a numerical diagonalization of the space-discretized
evolution operator [29, 30| effectively resolves all of the above issues. Once
energy spectra is calculated in the low-( regime, this can be used to obtain
the one-particle partition function for any value of the inverse temperature
(£ in a numerically inexpensive way. Calculations based on this approach
do not have restrictions in the high-3 regime, where, in fact, they turn out
to yield results with even better precision. In addition, the one-particle
energy eigenfunctions obtained by the exact diagonalization will allow us
to calculate local properties of Bose-Einstein condensates with very high
accuracy.

This procedure is implemented in Fig. 2 for several values of the rotation
frequency €2 in units of r = Q/w, . For example, from Fig. 2a for T, = 63.14
nK we see that the corresponding number of particles is N = 3-10°, which
coincides with the value for a critically rotating condensate in the exper-
iment of Dalibard and co-workers [37]. Fig. 2b summarizes the numerical
results for the condensation temperature T, for the anharmonicity k¥ = kggc
as well as the particle numbers N = 3-10° and N = 1-10%. If we compare
the obtained numerical results with the semiclassical approximation from
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Figure 2: (a) Number of thermally excited atoms N — No as a function of the tem-
perature T for different values of the rotation frequency and the quartic anharmonicity
k = kprc. The dashed line corresponds to the number of atoms N = 3 - 10° in the ex-
periment [37]. (b) The condensation temperature as a function of the rotation frequency
for the condensate of N = 3-10° and N = 1-10* atoms of " Rb, with the quartic an-
harmonicity of the trap k = kgc. For comparison, the full lines on both graphs depict
the semiclassical results from Ref. [40].

Ref. [40], we see that the agreement turns out to be relatively good for the
undercritical regime, but it becomes worse for an overcritical rotation of
the condensate. Note that semiclassical corrections due to higher region of
energy spectra [23] is also taken into account in our numerical calculations.

5.2. Density Profiles and Time-of-Flight Graphs

The two-point propagator p(x1, 29) = (¥f(21)¥(22)) defines via its diago-
nal element, i.e. n(x) = p(z,x), the density profile of atoms in a trap. For
the ideal Bose gas, the density profile can be written as

n(z) = Nolyo(@)[* + Y Nulyn ()%, (29)

n>1

where the second term represents the thermal contribution to the density
profile. Furthermore, the quantities 1, represent single-particle eigenstates,
while the occupancies N,, with n > 1 are given by the Bose-Einstein distri-
bution )

Nn - eﬁ(En—EO) — 1 ’

(30)
Having at our disposal numerically calculated energy eigenvalues and eigen-
functions, we can calculate the density profile of the condensate. In order
to do so, we first have to obtain the ground-state occupancy number Ny
using the approach described in the previous section. Once this is done,
Eq. (29) allows to calculate the density profile. In view of a comparison
with absorption imaging, which always produces two-dimensional profiles,
we have to integrate our numerically determined three-dimensional parti-
cle density n(x) along the imaging axis z. Fig. 3 presents typical results
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n(x,y)
1010
810
610
410%
410

Figure 3: Density profile in xy-plane for a non-rotating (top) and a critically rotating
(bottom) condensate of N = 3 - 10° atoms of ®"Rb with the anharmonicity £ = ksrc
at T = 30 nK. The dimensionless unit length on both graphs corresponds to 1.34 pm,
i.e. the linear size of the profile is approximately 16.1 pym (left) and 32.2 pm (right).

for the resulting density profiles of Bose-Einstein condensates for both the
non-rotating and the critically-rotating case. Obviously, a rotation of the
condensate leads to an effective spreading due to the appearance of a cen-
trifugal potential.

Although this approach is sufficient for treating the low-temperature regime,
where the condensate is present, we emphasize that the same method can
also be used to deal with the thermal regime, when the temperature is
increased beyond T.. For even higher temperatures, when the number of
energy eigenstates, that need to be taken into account, exceeds the number
of numerically accessible eigenstates, the presented approach can be ex-
tended in a similar way as the partition function was calculated previously
as a sum of diagonal transition amplitudes. Using the cumulant expansion
of occupancies and the spectral decomposition of thermal transition am-
plitudes, the density profile can be written for high enough temperatures
as

n(x) = Nolwo(@) + Y |75 A, 0:2,mP) — [o(@)?| . (31)

m>1

Here A(x,0;x,m() represents the imaginary-time amplitude for a single-
particle transition from the position x in the initial imaginary time ¢t = 0
to the position z in the final imaginary time t = m(.

While both definitions (29) and (31) are mathematically equivalent in the
case when one is able to calculate infinitely many energy eigenstates and
amplitudes for an arbitrary propagation time, the first one is more suitable
for low temperatures, when the number of relevant energy eigenstates is
moderate, and the second one is suitable for high temperatures, when the
imaginary propagation time [ is small, and the short-time expansion can
be successfully applied.

In typical BEC experiments, a trapping potential is switched off and the
gas is allowed to expand freely during a short flight time ¢ which is of the
order of several tens of milliseconds. Afterwards an absorption picture is
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taken which maps the density profile to the plane perpendicular to the
laser beam. For the ideal Bose condensate, the density profile after time ¢
is given by

n(z,t) :N()’"L/}o(x,t)IZ—i—ZNnWJn(l’,t)‘Q, (32)

n>1

where the density profile has to be integrated along the imaging axis, and
the eigenstates 1, (x,t) are propagated according to the free Hamiltonian,
containing only the kinetic term, since the trapping potential is switched
off. If the energy eigenstates are available exactly, either analytically or
numerically, their propagation time can be calculated by performing two
consecutive Fourier transformations:

3k d3 .
Ul t) = / m)feﬂk'“-m—%ﬂ bn(R), (33)

where the term e~™*! accounts for a free-particle propagation in k-space.

In practical applications, when the energy eigenstates are calculated by
a numerical diagonalization of space-discretized transition amplitudes, the
natural way to calculate the above free-particle time evolution is to use Fast
Fourier Transform (FFT) numerical libraries. This is illustrated in Fig. 4
for overcritical rotation.

For high temperatures we can use a mathematically equivalent definition
of the density profile which is derived again from using the cumulant ex-
pansion of occupancy numbers and the spectral decomposition of transition

n(x,y)
5000 TOF = 16 ms

n(x.y)

Figure 4: Time-of-flight absorption density profiles in zy-plane for an over-critically
rotating (r = 1.04) condensate of N = 3 - 10° atoms of 5"Rb with the anharmonicity
k = kerc at T'= 30 nK. The flight time, designated as TOF, is given at each plot. The
dimensionless unit length on all graphs corresponds to 1.34 um and the linear size of
profiles is approx. 53.6 um.
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amplitudes:

n(x,t) = N0|¢0(1:7t)|2 + Z

m>1

i, / d3ky d3ky d3 X, d3 X
(2m)S

e/l —haya=ki-Xatha Xo= (Wi w2t A (X7, 0; Xo, mpB) — |tho(z, 1)[?| . (34)

In both approaches it is first necessary to calculate the ground-state energy
Ey and the eigenfunction 9y(x), as well as the ground-state occupancy Nj.
If we rely on Egs. (32) and (33) to calculate time-of-flight graphs, we have
to calculate as many eigenstates as possible by numerical diagonalization.
Conversely, if it is possible to use directly Eq. (34), we can apply the effec-
tive action short-time exp

6. Conclusions and Outlook

We have presented an analytic procedure for determining the short-time
propagation of a general non-relativistic M-particle theory in d dimensions
to extremely high orders. The procedure is based on recursively solving the
Schrédinger equation for the transition amplitude in a power series of the
propagation time. This leads to a new recursion relation that can be solved
to the desired order p. The presented results define the state-of-the-art for
calculating short-time expansion amplitudes. They can be used to obtain
orders of magnitude speedup in Path Integral Monte Carlo calculations.

This approach is applied for an efficient numerical calculation of both global
and local properties of fast-rotating Bose-Einstein condensates. To this end
we have calculated large numbers of single-particle eigenvalues and eigen-
states using an exact numerical diagonalization of the space-discretized
evolution operator matrix. Using this information, we have calculated the
condensation temperature and the ground-state occupancy of the conden-
sate, as well as density profiles and time-of-flight absorption graphs.

We plan to continue development of this approach and to extend it to
systems with time-dependent potentials, as well as to the case of real-time
dynamics. We also plan to derive higher-order estimators for numerical
calculation of the expectation values of kinetic and potential energy, heat
capacity, and susceptibility.
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