
ar
X

iv
:1

01
1.

51
85

v2
  [

co
nd

-m
at

.s
ta

t-
m

ec
h]

  4
 M

ar
 2

01
1

Fast Converging Path Integrals for Time-Dependent Potentials II:

Generalization to Many-body Systems and Real-Time Formalism

Antun Balaž,1, 2, ∗ Ivana Vidanović,1 Aleksandar
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Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia

3Fachbereich Physik, Universität Duisburg-Essen,

Lotharstraße 1, 47048 Duisburg, Germany

Abstract

Based on a previously developed recursive approach for calculating the short-time expansion of

the propagator for systems with time-independent potentials and its time-dependent generaliza-

tion for simple single-particle systems, in this paper we present a full extension of this formalism

to a general quantum system with many degrees of freedom in a time-dependent potential. Fur-

thermore, we also present a recursive approach for the velocity-independent part of the effective

potential, which is necessary for calculating diagonal amplitudes and partition functions, as well

as an extension from the imaginary-time formalism to the real-time one, which enables to study

the dynamical properties of quantum systems. The recursive approach developed here allows an

analytic derivation of the short-time expansion to orders that have not been accessible before,

using the implemented SPEEDUP symbolic calculation code. The analytically derived results are

extensively numerically verified by treating several models in both imaginary and real time.
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I. INTRODUCTION

Although a large number of physical systems admit studies of their basic properties using

different types of time-independent formalisms, in many important cases one has to explicitly

take into account the time dependence and to apply the appropriate approach, i.e. one of

available time-dependent analytical or numerical methods. This has to be done even for

systems with time-independent potentials if their dynamical properties and time evolution

is studied. However, for describing systems in genuinely time-dependent external potentials

or for rotating systems, using of such approaches is always necessary. This applies equally

to classical and quantum systems, and various methods have been developed to address

relevant physical problems. For quantum systems a number of general methods is available,

ranging from time-dependent perturbation theory and variational perturbation theory, to

specialized approaches such as the Density Matrix Renormalization Group (DMRG) [1, 2],

the Density Functional Theory (DFT) [3, 4], and the Density Matrix Functional Theory

(DMFT) [5].

In addition to these generic schemes, several specific numerical methods have been de-

veloped for enabling a quantitative description of quantum systems that have attracted a

significant research interest. This includes studies of ultra-cold quantum gases [6–15] and

optical lattices [16–19], whose comprehensive and highly tunable features make them an

important example of Feynman’s quantum simulator [20]. In such numerical approaches

[21–24] usually a second-order algorithm in the propagation time is used, which is basically

the same as in the time-independent case. However, also higher order schemes have been

derived, including fourth [25–28] and higher-order expansions [29–32].

The main goal of this paper is to develop a formalism which enables a systematic improve-

ment in the convergence order of numerical algorithms for general time-dependent quantum

systems. In our previous paper [33], we have extended the earlier established approach

[34–37] for obtaining a high-order short-time expansion of transition amplitudes for time-

independent potentials to the important time-dependent case. In that paper, we have first

calculated a short-time expansion of a generic transition amplitude using the path integral

formalism to fourth order in the propagation time, which has then served the important

purpose: to introduce the proper functional form of the ansatz for the ideal discretized ef-

fective potential, as well as its short-time double series expansion in both the propagation
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time and the discretized velocity. Using both the forward and backward Schrödinger equa-

tion for transition amplitudes, we have then derived the appropriate equation for the ideal

effective potential, which represents an important generalization of the equation derived in

Ref. [37] for the time-independent case. Using the double series expansion ansatz for the

effective potential, we have been able to set up and solve recursive relations for the effective

potential for one-dimensional systems, and to numerically verify that higher-order analytic

approximative results for transition amplitudes obtained in this way, indeed, give the correct

convergence order for a number of models.

In this paper we further develop and generalize the time-dependent approach introduced

in Ref. [33]. First, in Sec. II we briefly review the time-dependent effective action approach

in the path-integral formalism of quantum mechanics [38–41], as well as the main results of

our previous paper [33]. Then we extend the recursive approach for calculating the short-

time expansion of the effective potential to quantum systems with many degrees of freedom

in Sec. III. In this section, the generalized approach is also numerically verified for the

case of a simple time-dependent multi-component harmonic oscillator system, and possible

relevant physical applications in the realm of ultracold quantum gases are briefly indicated.

In Sec. IV we present another important extension of the time-dependent formalism, and

set up a specific recursive relation for calculating diagonal transition amplitudes, which

are necessary for a numeric high-precision calculation of partition functions. In this case,

a simplified set of recursive relations is obtained, which is numerically verified for several

model potentials. Finally, Sec. V illustrates how the developed imaginary-time formalism

can be transformed into a real-time one, and its applicability is numerically demonstrated

by treating several models. We also show how the real-time evolution can be described using

the time-dependent effective action approach, and how the associated numerical errors can

be assessed and controlled in typical applications.

II. EFFECTIVE ACTION APPROACH FOR SYSTEMS WITH TIME-DEPEN-

DENT POTENTIALS

In this section we give a brief overview of the time-dependent effective action approach es-

tablished in Ref. [33]. This formalism considers a non-relativistic quantum multi-component
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system in d spatial dimensions with a Hamiltonian of the form

Ĥ(p̂, q̂, t) =

P
∑

i=1

p̂2
(i)

2M(i)
+ V (q̂, t) , (2.1)

where P denotes the number of particles in the system and the P × d dimensional vectors

q and p contain positions and momenta of all particles, while the parenthetic subscript (i)

denotes the particle number. For such a system we consider the calculation of the transition

amplitudes

A(a, ta;b, tb) = 〈b, tb|Û(ta → tb)|a, ta〉 , (2.2)

where the vectors a and b describe the positions of all particles at the initial and final time

ta and tb, respectively. The above transition amplitude is a coordinate-space matrix element

of the evolution operator, which describes the propagation of the system (2.1) from ta to tb,

and is defined by the time-ordered exponential

Û(ta → tb) = T̂ exp

{

− i

~

∫ tb

ta

dt Ĥ(p̂, q̂, t)

}

. (2.3)

In the path-integral formalism, the transition amplitude can be expressed by a coordinate-

space path integral

A(a, ta;b, tb) =

∫ q(tb)=b

q(ta)=a

Dq(t) exp

{

i

~
S[q]

}

, (2.4)

where the integration is defined over all possible trajectories q(t). This usually involves the

discretization of the trajectories, which is usually performed by dividing the time evolution

from ta to tb into N equal time steps. In the above equation, S denotes the action for a

given trajectory q(t):

S[q] =

∫ tb

ta

dt

{

1

2
q̇2(t)− V (q(t), t)

}

. (2.5)

The common step at this point is to switch to the imaginary-time formalism, which is

usually applied in numerical simulations [42], due to problems which may arise from the

oscillatory nature of the integrand in the real-time approach. We will do so as well in the

next two sections, but in Sec. V we will switch the developed formalism back to the real

time and demonstrate how it can be used for studying the dynamics and real-time evolution
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of quantum systems. After Wick rotation to the imaginary time, the transition amplitude

in the path-integral formalism is expressed as

A(a, ta;b, tb) =

∫ q(tb)=b

q(ta)=a

Dq(t) e−
1

~
SE [q] , (2.6)

where the Minkowski action is now replaced by its imaginary-time counterpart, the Euclidean

action

SE[q] =

∫ tb

ta

dt

{

1

2
q̇2(t) + V (q(t), t)

}

, (2.7)

which is actually the energy functional for the system.

As was shown previously for time-independent potentials [37], as well as for the time-

dependent ones in Ref. [33], the exact imaginary-time transition amplitudes can be expressed

in the form

A(a, ta;b, tb) =
1

(2πε)Pd/2
e−S∗(x,x̄;ε,τ) , (2.8)

where S∗ stands for the ideal discretized action and depends on the coordinate mid-point

x = (a+ b)/2, the discretized velocity x̄ = (b− a)/2, the time interval ε = tb − ta, and the

time mid-point τ = (ta + tb)/2. Note that we have used the convention ~ = 1, and we have

restricted ourselves to particles with unitary masses m(i) = 1. The ideal discretized action

further reads [33, 43, 44]

S∗(x, x̄; ε, τ) =
2

ε
x̄2 + εW (x, x̄; ε, τ) , (2.9)

where W is the ideal discretized effective potential, which also depends on the time mid-

point τ due to the explicit time dependence of the potential V . This represents the major

difference in the formalism compared to the previously developed one in Ref. [37] for the

time-independent case.

In order to determine a partial differential equation for the ideal effective potentialW , we

have derived in Sec. 4 of our previous paper [33] the forward and the backward Schrödinger

equation for time derivatives of the transition amplitude with respect to the initial and final

time, and have found that they obey

∂tb A(a, ta;b, tb) = −ĤbA(a, ta;b, tb) , (2.10)

∂ta A(a, ta;b, tb) = ĤaA(a, ta;b, tb) , (2.11)
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where Ĥb stands for the coordinate-space Hamilton operator Ĥb = H(−i∂b,b, tb), in which

momentum and position operators are replaced by their coordinate-space representations

at b (and similarly for Ĥa). When we insert the ansatz (2.8) together with (2.9) into the

equations (2.10) and (2.11) , we obtain the corresponding partial differential equation for

the effective potential in the form

W+x̄·∂̄W+ε∂εW−1

8
ε∂2W−1

8
ε∂̄2W+

1

8
ε2(∂W )2+

1

8
ε2(∂̄W )2 =

1

2
(V++V−) , (2.12)

where V± = V (x± x̄, τ ± ε
2
), i.e. V− = V (a, ta) and V+ = V (b, tb). As expected, the form of

this equation is the same as Eq. (29) from Ref. [37], and if the potential V does not depend

on time, we immediately obtain the previously derived result.

The above equation is the starting point for calculating the effective potential. Naturally,

it can be solved analytically only for exactly solvable models. However, if the propagation

time is short, we can perform a short-time expansion of the effective potential and set up

appropriate equations for the coefficients in this expansion. In our previous paper [33] this

was done for one-dimensional systems, and it was shown that we have to use a double

expansion of the effective potential in both ε and x̄. The reason for this is the fact that the

propagation in the imaginary time is equivalent to diffusion, and therefore, on the average,

we expect the diffusion relation x̄2 ∼ ε to hold. This allows us to effectively couple the two

expansion parameters and to establish a unique counting of powers in ε for all terms in the

expansion for W . However, if the diffusion relation is not applicable, the two expansions

can be considered as independent, and the whole approach can still be applied, with an

independent counting of powers in ε and in x̄.

In the next section we will analytically derive a systematic short-time expansion of the ef-

fective potentialW for quantum many-body systems, which yields a significant improvement

in the convergence of numerically calculated transition amplitudes and partition functions

for systems in time-dependent potentials. As we see from Eq. (2.9), if the effective potential

W is calculated to order εp−1, we get the effective action correct to order εp. If we take

into account the normalization factor in the expression (2.8), the corresponding error in the

calculation of the short-time amplitude is given by

Ap(a, ta;b, tb) = A(a, ta;b, tb) +O(εp+1−Pd/2) , (2.13)

where subscript p denotes that we use the effective action of that order in ε. Therefore,

we see that the analytical calculation of higher-order effective actions is beneficial, since
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it provides an analytic approximation for transition amplitudes which yield high-precision

results of the desired order in numerical calculations.

III. MULTI-COMPONENT SYSTEMS

Now we focus on the development of the recursive formalism for calculating the effective

potential for the case of a general multi-component non-relativistic quantum system of P

particles in d dimensions by extending the one-dimensional calculations of Sec. 5 in our

previous paper [33]. Note that such a formalism is needed even for studies of single-particle

systems in two or three spatial dimensions, which have more than one degree of freedom. For

example, such time-independent many-body effective actions of level p = 21 have already

been used for a numerical study of fast-rotating Bose-Einstein condensates [45], as well

as a high-precision calculation of the energy spectra and eigenfunctions of several two-

dimensional models [46, 47]. The presented extension of the many-body formalism will allow

studies of such systems in external time-dependent potentials, as well as the investigation of

the formation and evolution of vortices [14, 15] and other dynamical phenomena. We also

plan to study collective oscillation modes of Bose-Einstein condensates with a parametrically

modulated interaction [48, 49].

To develop the time-dependent many-body formalism, we solve the partial differential

equation (2.12) for the effective potential W by using a multi-dimensional many-particle

generalization of the double power expansion used in Eq. (33) of our previous paper [33] for

one-component systems, which has the form

W (x, x̄; ε, τ) =

∞
∑

m=0

m
∑

k=0

{

Wm,k(x, x̄; τ) ε
m−k +Wm+1/2,k(x, x̄; τ) ε

m−k
}

. (3.1)

Here we have introduced the contractions

Wm,k(x, x̄; τ) = x̄i1 · · · x̄i2k ci1,...i2km,k (x; τ) , (3.2)

Wm+1/2,k(x, x̄; τ) = x̄i1 · · · x̄i2k+1
c
i1,...i2k+1

m+1/2,k (x; τ) , (3.3)

in such a way that they correspond to the case of the time-independent potential [37]. In the

above relations we assume the Einstein convention that summation over repeated indices is

performed. Introducing such contractions of tensorial coefficients c significantly simplifies
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in this case the analytic derivation and also provides a key ingredient for implementing the

many-body recursion relations in symbolic calculations using e.g. Mathematica software

package [50]. Otherwise, the task to explicitly symmetrize the coefficients would amount to

a complexity of the algorithm which scales with the number of possible permutations (P×d)!
and which would not be feasible even for a very moderate number of particles. Using scalar

quantities, which are obtained by contracting the coefficients with the discretized velocity

x̄, efficiently solves this problem.

The multiple-component version of the expression from the right-hand side of Eq. (2.12)

has the form

1

2
(V+ + V−) =

∞
∑

m=0

m
∑

k=0

{

Π(m, k) εm−k

(2k)! (m− k)! 2m−k
(x̄ · ∂)2k + (1− Π(m, k)) εm−k

(2k + 1)! (m− k)! 2m−k
(x̄ · ∂)2k+1

}

(m−k)

V , (3.4)

where
(m−k)

V represents (m−k)-th partial derivative of the potential with respect to the time

τ . After inserting the above expression into the partial differential equation (2.12) for the

effective potential we straightforwardly obtain recursive relations for even- and odd-power

contractions Wm,k and Wm+1/2,k:

8(m+ k + 1)Wm,k = 8
Π(m, k) (x̄ · ∂)2k

(m−k)

V

(2k)! (m− k)! 2m−k
+ ∂̄2Wm,k+1 + ∂2Wm−1,k

−
∑

l,r

{

∂Wl,r · ∂Wm−l−2,k−r + ∂Wl+1/2,r · ∂Wm−l−5/2,k−r−1

+∂̄Wl,r · ∂̄Wm−l−1,k−r+1 + ∂̄Wl+1/2,r · ∂̄Wm−l−3/2,k−r

}

, (3.5)

8(m+ k + 2)Wm+1/2,k = 8
(1−Π(m, k)) (x̄ · ∂)2k+1

(m−k)

V

(2k + 1)! (m− k)! 2m−k
+ ∂̄2Wm+1/2,k+1 + ∂2Wm−1/2,k

−
∑

l,r

{

∂Wl,r · ∂Wm−l−3/2,k−r + ∂Wl+1/2,r · ∂Wm−l−2,k−r

+∂̄Wl+1/2,r · ∂̄Wm−l−1,k−r+1 + ∂̄Wl,r · ∂̄Wm−l−1/2,k−r+1

}

. (3.6)

The diagonal contractions can easily be calculated in a closed form as in the single-particle

one-dimensional case, yielding

Wm,m =
1

(2m+ 1)!
(x̄ · ∂)2m V , (3.7)

Wm+1/2,m = 0 . (3.8)
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Thus, the recursion relations (3.5) and (3.6) can be solved up to a given order p together

with (3.7) and (3.8) by using a similar procedure as before. Here we give the solution up to

order p = 4, which generalizes the previously given solution for the simple case P = d = 1,

obtained in Ref. [33]. For m = 0 we only have the naive p = 1 term, i.e.

W0,0 = V , (3.9)

while m = 1 yields the first non-trivial even-power terms

W1,1 =
1

6
(x̄ · ∂)2V , (3.10)

W1,0 =
1

12
∂2 V , (3.11)

which are sufficient to construct p = 2 effective action. The next term we calculate is the

odd-power contraction for m = 1, i.e.

W3/2,0 =
1

6
(x̄ · ∂)V̇ , (3.12)

which contains the explicit time derivative of V . For m = 2 we obtain the next order of

even-power terms:

W2,2 =
1

120
(x̄ · ∂)4V , (3.13)

W2,1 =
1

120
(x̄ · ∂)2∂2 V , (3.14)

W2,0 =
1

24
V̈ +

1

240
∂4 V − 1

24
(∂V )2 . (3.15)

These terms, together with the previously calculated ones, are sufficient to construct level

p = 3 effective action. In order to be able to complete p = 4 effective action derivation, we

still need to calculate odd-power contractions corresponding to m = 2

W5/2,1 =
1

60
(x̄ · ∂)3 V̇ , (3.16)

W5/2,0 =
1

120
(x̄ · ∂) ∂2V̇ , (3.17)

(3.18)

9



as well as even-power contractions for m = 3,

W3,3 =
1

5040
(x̄ · ∂)6V , (3.19)

W3,2 =
1

3360
(x̄ · ∂)4∂2 V , (3.20)

W3,1 =
1

3360
(x̄ · ∂)2∂4 V +

1

80
(x̄ · ∂)2 V̈ − 1

360

(

(x̄ · ∂)∂V
)2

− 1

120
(∂V ) · (x̄ · ∂)2∂V , (3.21)

W3,0 =
1

6720
∂6 V +

1

480
∂2 V̈ − 1

360
(∂i∂V ) · (∂i∂V )−

1

120
(∂V ) · ∂2∂V . (3.22)

This concludes the calculation of level p = 4 effective action for a general many-body quan-

tum system. As before, the obtained results automatically reduce to the already known

effective actions for the time-independent potentials [37] if we set all time-derivatives of

the potential to zero. Furthermore, the many-body results (3.9)–(3.22) reduce for the spe-

cial case P = d = 1 to the previous time-dependent results [33]. The outlined procedure

continues in the same way for higher levels p. We have automatized this procedure and

implemented it in our SPEEDUP code [51] using the Mathematica software package [50] for

symbolic calculus.

In order to numerically verify the developed expressions for the case of multi-component

quantum systems, we will calculate transition amplitudes of a set of time-dependent har-

monic oscillators,

V (q, t) =

P
∑

i=1

1

2
ω2
i (t) q

2
i , (3.23)

which represents the archetypical model for many physical phenomena. This exactly solv-

able model allows us to compare analytical expressions obtained from recursive relations and

to verify that using level p effective action leads to values of transition amplitudes which

are correct up to order εp+1−Pd/2. As we can see in Fig. 1 for a system of P = 2, 4, 6

time-dependent oscillators, the respective scaling is perfect. The middle and bottom plots

illustrate another important feature of the short-time expansion for multi-component sys-

tems: as the number of components of the system Pd increases, the exponent p+ 1− Pd/2

may become zero or negative for a given effective action level p. This leads to the peculiar

behavior observed in the middle and bottom plots for small values of p, with the deviation of

the amplitude being constant (P = 4, p = 1 in the middle plot, P = 6, p = 2 in the bottom

plot) or even increasing (P = 6, p = 1 in the bottom plot) when ε is decreased. Thus,
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FIG. 1. Deviations of diagonal transition amplitudes |∆Ap(a = 1, ta = 0;b = 1, tb = ε)| from

the exact values as a function of propagation time ε for a multi-component system (3.23) of time-

dependent harmonic oscillators: (top left) P = 2 oscillators, with ω2
1(t) = 1 + 1

2 sin2 2t, ω2
2(t) =

1+ 1
2 cos 2t; (top right) P = 4 oscillators, with ω2

1(t), ω
2
2(t), ω

2
3(t) = 2 + cos 5t, ω2

4(t) = 4+ sin2 4t;

(bottom) P = 6 oscillators, with ω2
1(t), ω

2
2(t), ω

2
3(t), ω

2
4(t), ω

2
5(t) = 2 + sin2 t, ω2

6(t) = 4 + 2 cos 3t.

Each plot gives results for transition amplitudes calculated using the effective action levels p =

1, 2, . . . , 16, from top to bottom.

this prevents the calculation of the transition amplitude with high accuracy, which is, in

principle, expected to be possible by decreasing ε. As we see, to enable such high-accuracy

calculations, one has to use an effective action with sufficiently high level p. The important

contribution of the presented approach lies in the fact that it offers a systematic formalism

for deriving such higher order expressions for a general quantum multi-component system.

As in the case of single-particle one-dimensional systems, computational complexity of

higher-order effective actions might significantly increase for higher values of p (typically
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exponentially, see e.g. Fig. 5 in Ref. [33]). This increase strongly depends on the type of

potential, but we expect to obtain significant computational benefits at least for moderate

values of p. The optimal value of the level p to be used in practical applications can always

be found through a small-scale numerical complexity study, by measuring relative increase

in CPU times as a function of p. Using this data, as well as the known scaling of Monte

Carlo errors and CPU times on the time step and number of samples, optimal value of p is

obtained by minimizing the CPU time for a required precision of transition amplitudes.

At the end of this section, we emphasize that the obtained discretized effective actions

can be used for solving a plethora of non-equilibrium many-body quantum problems within

the exact diagonalization [46, 47] or Path Integral Monte Carlo approach, including the

continuous-space worm algorithm [52]. For instance, in typical experimental setups with ul-

tracold quantum gases harmonic or anharmonic confining potentials are generically switched

on and off, thus generating natural non-equilibrium situations. As so far mainly quenched

potentials have been considered, it would certainly be rewarding to study in a systematic

way how the time scale, upon which a potential is switched off, influences the observed

time-of-flight absorption pictures. Another upcoming research field is the investigation of

the phenomenon of parametric resonance in Bose-Einstein condensates. A first experiment,

where the s-wave scattering length of 7Li atoms has been modulated periodically with the

help of a Feshbach resonance, has recently been performed [48]. In order to understand

the observed resonance spectrum both analytical methods from nonlinear dynamics [49]

and numerical methods as the presented fast converging path-integral approach have to be

combined.

IV. VELOCITY-INDEPENDENT PART OF THE EFFECTIVE POTENTIAL

Now we turn our attention to the special case of the velocity independent part of the

effective potential. It determines the diagonal amplitudes, for which the discretized velocity

x̄ is equal to zero. The efficient and precise calculation of diagonal transition amplitudes is

essential for many quantum statistical problems, since it provides a direct method to obtain

partition functions, and can be used to calculate energy spectra, density profiles, and other

relevant physical quantities. Therefore, we will derive a new set of recursive relations for

the coefficients which determine the velocity-independent part of the effective potential. For
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simplicity, we will present the derivation for one-dimensional systems, where the effective

potential for x̄ = 0 can be written as

W0(x; ε, τ) ≡W (x, 0; ε, τ) =

∞
∑

m=0

cm,0(x, τ) ε
m . (4.1)

Such recursive relations for coefficients cm ≡ cm,0 will turn out to be much simpler than the

full set of recursions obtained in the previous paper [33].

In order to derive equations determining the coefficients cm, we have to perform the

limit x̄ → 0 in the partial differential equation (2.12) for the effective potential W . This is

nontrivial, since the equation contains derivatives with respect to x̄. Therefore, we have to re-

examine both Schrödinger equations (2.10) and (2.11), and express them using the variables

x, x̄, ε, and τ . After a change of variables, we get the following system of equations for the

transition amplitude:
[

∂ε −
1

8
∂2 − 1

8
∂̄2 +

1

2
(V+ + V−)

]

A(x, x̄; ε, τ) = 0 , (4.2)

[

∂τ −
1

2
∂∂̄ + V+ − V−

]

A(x, x̄; ε, τ) = 0 . (4.3)

If we take the derivative with respect to x̄ of the second equation, use it to express the term

∂∂̄2A, and insert it into the derivative of the first equation with respect to x, we obtain the

partial differential equation

∂ε∂A−
1

8
∂3A−1

4
∂τ ∂̄A−

1

4
A ∂̄(V+−V−)−

1

4
(V+−V−) ∂̄A+

1

2
A∂(V++V−)+

1

2
(V++V−) ∂A = 0 ,

(4.4)

in which it is easier to perform the required x̄ → 0 limit. In the terms that do not contain

derivatives with respect to x̄, we can just set x̄ = 0 and replace the transition amplitude A

with A0 = exp(−εW0)/
√
2πε. In the remaining terms the limit has to be performed more

carefully. The terms containing combinations V+±V− and their derivatives are the simplest,

and we obtain

(V+ + V−)
∣

∣

∣

x̄→0
= 2

∞
∑

m=0

ε2m
(2m)

V

(2m)! 22m
, (4.5)

(V+ − V−)
∣

∣

∣

x̄→0
= 2

∞
∑

m=0

ε2m+1
(2m+1)

V

(2m+ 1)! 22m+1
, (4.6)

∂(V+ + V−)
∣

∣

∣

x̄→0
= ∂̄(V+ + V−)

∣

∣

∣

x̄→0
= 2

∞
∑

m=0

ε2m
(2m)

V ′

(2m)! 22m
, (4.7)
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where the prime in the last expression denotes the derivative with respect to x. For the

terms ∂̄A and ∂τ ∂̄A we have to explicitly use the full double power expansion for the effective

potential

W (x, x̄; ε, τ) =
∞
∑

m=0

m
∑

k=0

[

cm,k(x, τ) ε
m−kx̄2k + cm+1/2,k(x, τ) ε

m−kx̄2k+1
]

, (4.8)

perform the differentiation and take the limit afterwards. This yields the results

∂̄A
∣

∣

∣

x̄→0
= −εA0

∞
∑

m=0

cm+1/2 ε
m , (4.9)

∂τ ∂̄A
∣

∣

∣

x̄→0
= −εA0

∞
∑

m=0

εm (ċm+1/2 − cm+1/2 εẆ0) , (4.10)

where dots now represent derivatives with respect to the time argument τ of the coefficient

cm+1/2 ≡ cm+1/2,0 and the effective potentialW0. As we see, the odd-power coefficients cm+1/2

cannot be eliminated altogether, although we are considering the diagonal amplitudes, for

which we have x̄ = 0. This is due to the derivatives with respect to x̄. From this we can

deduce that we will need again two recursion relations to determine all needed coefficients,

despite the fact that in the end we will use only the even-power ones. Therefore, we will use

Eq. (4.3) to derive the second recursive relation for the coefficients. In order to do so, we

still need to calculate the term ∂∂̄A in the considered limit x̄→ 0:

∂∂̄A
∣

∣

∣

x̄→0
= A0

∞
∑

m=0

εm (cm+1/2 ε
2W ′

0 − c′m+1/2 ε) . (4.11)

Inserting all calculated x̄ → 0 terms into equations (4.3) and (4.4), as well as using the

expansion (4.1), we finally obtain the following coupled system of recursive relations for the

coefficients cm and cm+1/2:

(2m+ 1) c′m = Π(0, m)

(m)

V ′

m! 2m
+

1

4
c′′′m−1 +

1

2
ċm−1/2 − 2

∑

l

(2l)

V

(2l)! 22l
c′m−2l−1

+
∑

l

(2l+1)

V

(2l + 1)! 22l+1
cm−2l−3/2 + 2

∑

l

c′l cm−l−1 + 2
∑

l

l cl c
′
m−l−1

−3

4

∑

l

c′l c
′′
m−l−2 −

1

2

∑

l

cl+1/2 ċm−l−2 +
1

4

∑

l,r

c′l c
′
r c

′
m−l−r−3 , (4.12)

1

2
c′m+1/2 = −2Π(0, m)

(m+1)

V

(m+ 1)! 2m+1
+ ċm +

1

2

∑

l

cl+1/2 c
′
m−l−1 . (4.13)

14



The above recursive relations are solved in a similar way as before. In order to obtain the

level p diagonal effective action W0, we need to take into account the terms in the expansion

with m = 0, 1, . . . , p − 1. The recursions for c′m and c′m+1/2 are easily solved starting from

m = 0 up to a desired level p−1. Although we get in this way only their first derivatives with

respect to x, the coefficients themselves can be calculated by direct symbolic integration, and

all solutions can be expressed in a closed form. The explicit calculation of the coefficients

to high orders yields the same results we have obtained in the previous section. To order

p = 1, we only have the trivial equation

c′0 = V ′ , (4.14)

that gives the well-known boundary condition c0 = V . To order p = 2 we have

c′1/2 = −2V̇ + 2ċ0 = 0 , (4.15)

3c′1 =
1

4
c′′′0 +

1

2
ċ1/2 − 2V c′0 + 2c′0 c0 =

1

4
c′′′0 , (4.16)

which yields c1/2 = 0 and c1 = c′′0/12 = V ′′/12. To order p = 3 we first calculate the

odd-power coefficient,

c′3/2 = 2ċ1 + c1/2 c
′
0 =

1

6
ċ′′0 , (4.17)

which leads to the result c3/2 = ċ′0/6 = V̇ ′/6. The even-power coefficient c2 is obtained from

5c′2 =
1

8
V̈ ′ +

1

4
c′′′1 +

1

2
ċ3/2 − 2V c′1 +

1

2
V̇ c1/2 + 4c′0 c1 + 2c′1 c0 −

1

2
c1/2 ċ0 −

3

4
c′0 c

′′
0

=

(

5V̈

24
+
V (4)

48
− 5V ′2

24

)′

, (4.18)

which finally yields

c2 =
V̈

24
+
V (4)

240
− V ′2

24
. (4.19)

These results coincide with the results obtained in our earlier paper [33] from the general

recursion relations. We similarly proceed to calculate higher-order coefficients. This is

easily automated in symbolic calculus software packages like Mathematica [50], and we have

implemented the derived recursions as a part of our SPEEDUP [51] code.

The main advantage of this approach is that we have been able to derive recursion re-

lations involving only the lower-level coefficients cm = cm,0 and cm+1/2 = cm+1/2,0, thus not

15



 10-180

 10-160

 10-140

 10-120

 10-100

 10-80

 10-60

 10-40

 10-20

 1

 10-8  10-7  10-6  10-5  10-4  10-3  10-2

|A
p(

1,
 0

; 1
, ε

) 
- 

A
(1

, 0
; 1

, ε
)|

ε

 10-180

 10-160

 10-140

 10-120

 10-100

 10-80

 10-60

 10-40

 10-20

 1

 10-8  10-7  10-6  10-5  10-4  10-3  10-2

|A
p(

1,
 0

; 1
, ε

) 
- 

A
(1

, 0
; 1

, ε
)|

ε

FIG. 2. Deviations of diagonal transition amplitudes |Ap(1, 0; 1, ε) − A(1, 0; 1, ε)| as a function of

propagation time ε for: (left) time-dependent harmonic oscillator (4.20), calculated analytically

for p = 1, 2, 3, 4, . . . , 20 from top to bottom; (right) forced harmonic oscillator (4.21) with ω = 1

and Ω = 2, calculated analytically for p = 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 from top to bottom. The

dashed lines on both graphs are proportional to ε1.5 and ε20.5, and demonstrate the perfect scaling

of the corresponding level p = 1 and p = 20 results.

requiring the calculation of all even- and odd-power coefficients, which are needed for the

general case. At the end of this section, we note that for time-independent potential V

the recursive relation (4.12) reduces to the previously known result [37], while the second

recursion (4.13) yields the expected result cm+1/2 = 0. Note that our recursive approach

thus allows to calculate higher orders of the seminal Wigner expansion [53].

Fig. 2 illustrates practical advantages of using velocity-independent effective actions for

the numerical calculation of diagonal transition amplitudes. The plot on the left gives the

deviations of diagonal amplitudes calculated with different levels p of the effective potential

W0 for the Grosche-rescaled [54] harmonic oscillator,

VG,HO(x, t) =
ω2x2

2(1 + t2)2
. (4.20)

while the plot on the right gives the analogous results for the forced harmonic oscillator

VFHO(x, t) =
1

2
ω2x2 − x sin Ωt , (4.21)

where Ω denotes the frequency of the external driving field. Both models are exactly solvable,

and the obtained ε-scaling to exceedingly high orders p demonstrates the correctness of the

analytically derived results.
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V. REAL-TIME FORMALISM

The presented approach has so far been developed within the imaginary-time framework,

which is useful in many practical applications. However, in order to study the more relevant

real-time dynamics of quantum systems, we have to switch back to the real-time formalism.

One possibility would be to make all calculations in imaginary time, and then to try to

perform an inverse Wick rotation, which might be difficult due to the oscillatory nature of

the integrand in calculating the real-time propagator. Another, much more straight-forward

possibility is to derive a new set of recursive relations within the real-time formalism. In

this section we will briefly outline such a procedure.

Reverting the imaginary-time formalism into a real-time one is achieved by replacing

the variable t representing the imaginary time with itR in all expressions, where now tR

represents the real time. This includes also the replacement of the time-interval ε with iεR,

and the time-midpoint τ with its real-time counterpart iτR. Instead of (2.8), the short-time

transition amplitude is now expressed as

A(a, ta;b, tb) =
1

(2πiεR)Pd/2
eiS

∗(x,x̄;εR,τR) , (5.1)

and the real-time version of the ideal effective action is defined as

S∗(x, x̄; εR, τR) =
2

εR
x̄2 − εRW (x, x̄; εR, τR) , (5.2)

which represents the counterpart of Eq. (2.9). Following the same procedure outlined in

Sec. II, we arrive at the real-time counterpart of Eq. (2.12) for the effective potential,

W+x̄·∂̄W+ε∂εW− i

8
ε∂2W− i

8
ε∂̄2W−1

8
ε2(∂W )2−1

8
ε2(∂̄W )2 =

1

2
(V++V−) , (5.3)

where the subscript R is dropped for simplicity. Further derivation of real-time recursion

relations is a straight-forward task. For brevity, we will not give the explicit form of the

recursion relations, but their Mathematica implementation is available from the SPEEDUP

code web page [51].

We illustrate the applicability of this formalism for studying the real-time dynamics

within the space-discretized approach [46, 47]. If we discretize the continuous space and

replace it with a grid defined by a discretization step ∆, all quantities are only defined on

a discrete set of coordinates qn = n∆, where n ∈ Z
Pd is a vector of Pd integer numbers.
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Matrix elements of the evolution operator,

Unm(ta → tb) = 〈qm|Û(ta → tb)|qn〉 , (5.4)

represent real-time transition amplitudes Anm(ta, tb) = A(qn, ta;qm, tb), which can be cal-

culated using the real-time effective action approach. If the initial state of the system |ψ, ta〉
is represented by a vector ψ(ta) whose elements are ψn(ta) = ψ(qn, ta) = 〈qn|ψ, ta〉, its
dynamics can be calculated by a simple matrix multiplication ψ(tb) = U(ta → tb) ·ψ(ta), i.e.

ψn(tb) =
∑

m

Unm(ta → tb)ψm(ta) . (5.5)

Therefore, since the matrix elements of the evolution operator can be accurately calculated

using the effective action approach, we are able to study real-time dynamics of the system

starting from any desired initial state.

Note that, although we rely on the short-time expansion of transition amplitudes, we are

not limited to study only a short-time evolution, since the above matrix multiplication can

be repeatedly performed. For any given propagation time T , we can divide the evolution to

N sub-intervals of length ε = T/N , which now correspond to short-time evolution matrix

elements Unm(ε). In addition to this, using the higher-order effective actions makes it

possible to perform high-accuracy calculations of Unm, and, correspondingly, to eliminate

the associated numerical errors for all practical purposes.

To demonstrate this, we show in Fig. 3 the time evolution of a harmonic oscillator V (q) =

1
2
ω2q2 calculated using the described method with effective action levels p = 1, 4 and p = 20.

As we can see, using the propagation interval ε = 0.1, the naive p = 1 action can be used

only for short propagations times, while we are able to reproduce very accurately the long-

time evolution of the system with higher p levels. In order to further quantitatively assess

numerical errors of the obtained results, we use the following integral measure,

||ψ(t)− ψp(t)|| =
(
∫ ∞

−∞

|ψ(q, t)− ψp(q, t)|2 dq
)1/2

, (5.6)

where ψ(q, t) represents the exact time evolution of the wave function and ψp(q, t) is the

approximate time evolution calculated using level p effective action. The semi-log plot in

Fig. 4 gives the p-dependence of the above-defined integral measure and demonstrates that

it obeys the expected power law, i.e. εp+1/2 in this case, leading to a much smaller error

when the propagation interval is reduced from ε = 1 to ε = 0.1. This graph also shows
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FIG. 3. Time evolution of the one-dimensional harmonic oscillator V (q) = 1
2 ω

2q2 calculated using

the space-discretized method [46, 47] and the effective action approach with: (left) p = 1, 4 and

(right) p = 20. Both graphs display the time dependence |ψ(q = 0, t)| of the absolute value of the

wave function at q = 0, and solid line represents the exact solution. The harmonic frequency was

ω = 1, the time-interval for propagation was ε = 0.1, and the initial state was set to the ground

state of the harmonic oscillator with ω = 2.

that errors due to the repeated matrix multiplication accumulate linearly with the number

of time steps.

The study of errors presented in Fig. 4 is very instrumental in optimizing numerical

parameters in practical applications. If we compare errors, which correspond to the same

total evolution time t = 1 and are calculated for a propagation in one time-step ε = t and

in N = 10 steps ε = t/N , we can see that decreasing ε substantially reduces errors. This

is easily understood, since errors are proportional to εp+1−Pd/2 and, therefore, introducing

N time steps is expected to reduce errors by a factor of Np+1−Pd/2. However, the fact that

the matrix multiplication will have to be repeated N times introduces an additional factor

of N , thus leading to the total reduction factor of Np−Pd/2.

As a final example, we calculate the time evolution of the time-dependent harmonic

oscillator with the potential

V (q, t) =
1

2
ω2(t)q2 (5.7)

with the frequency ω(t) = 1+ 1
10
t for p = 1 and p = 6. Fig. 5 displays the time evolution of

the absolute value of the wave function at q = 0 with the propagation interval ε = 0.1, and
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FIG. 4. Integral measure (5.6) for numerically calculated time evolution of the harmonic oscillator

as a function of the effective action level p for different values of the propagation time t. The

parameters are the same as in Fig. 3.

the initial state set to

ψ(q, t = 0) =
1

π1/4
e−

1

2
q2+ 1

2
iq . (5.8)

As expected, the naive p = 1 effective action can only be used for very short propagation

times, while p = 2 action gives accurate results for longer propagation times T ≤ 15. A

moderate level p = 6 effective action represents an even further substantial improvement

and can be used to accurately study much longer propagation times, as can be seen from

the inset in Fig. 5.

We emphasize that the presented approach might be especially of interest for Path Integral

Monte Carlo (PIMC) calculations of the dynamics of quantum systems, in conjunction e.g.

with the multilevel blocking method [55]. Dynamical PIMC calculations are quite difficult

due to the dynamical sign problem, and the availability of highly accurate propagators allows

use of relatively small number of Trotter slices, thus substantially improving the numerical

convergence.
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FIG. 5. Time evolution of the time-dependent harmonic oscillator (5.7) calculated using the space-

discretized method [46, 47] and the effective action approach with p = 1, p = 2, and p = 6. The

graph displays the time dependence |ψ(q = 0, t)| of the absolute value of the wave function at q = 0.

The time-dependent harmonic frequency is given by ω(t) = 1 + 1
10 t, time-interval for propagation

was ε = 0.1, and the initial state was set according to Eq. (5.8).

VI. CONCLUSIONS

In this paper we have presented a significant extension of the approach introduced in

the preceding paper [33], which has established a recursive procedure for calculating the

short-time transition amplitudes for one-dimensional quantum systems in time-dependent

potentials. This approach is generalized here to non-relativistic many-body quantum sys-

tems with many degrees of freedom. In parallel to the approach for time-independent po-

tentials [37], we have introduced an ideal effective potential for time-dependent systems,

derived the appropriate equation using the forward and backward Schrödinger equation for

the transition amplitude, and set up an efficient system of recursive relations, which can be

analytically solved to high orders in the short propagation time. Furthermore, we have im-

plemented a symbolic calculation scheme for higher-order effective actions in the SPEEDUP

code [51]. The analytically derived results are verified by studying several models and a list
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of possible applications of the presented method to relevant many-body quantum systems

has been briefly outlined.

In addition to this, we have also studied velocity-independent part of the effective action,

which is relevant for calculating the diagonal amplitudes and partition functions. We have

obtained a new, simpler set of recursion relations, which determine the diagonal effective

action, and have numerically verified that it yields the correct systematic increase in the

convergence of diagonal amplitudes for several models.

Finally, we have also looked at how the developed formalism can be transformed from

its original, imaginary-time setup to the real-time one. We have derived the real-time

counterparts of equations for the effective potential and applied the higher-order real-time

effective actions to a numerical study of the time evolution of several models using the space-

discretized approach [46, 47]. We have demonstrated that the presented approach can be

successfully used both in the real-time and in the imaginary-time formalism, and that in

both cases we obtain analytically derived improved convergence of numerically calculated

transition amplitudes and other quantities. We point out that the presented approach

can contribute to improving Path Integral Monte Carlo calculations of the dynamics of

quantum systems in conjunction e.g. with the multilevel blocking method, since higher-

order propagators enable use of fewer number of Trotter slices.
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[33] A. Balaž, I. Vidanović, A. Bogojević, A. Belić, and A. Pelster, J. Stat. Mech. P03004 (2011),

arXiv:0912.2743
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