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We show by extensive numerical simulations and analytical variational calculations that elongated
binary non-miscible Bose-Einstein condensates subject to periodic modulations of the radial confine-
ment exhibit a Faraday instability similar to that seen in one-component condensates. Considering
the hyperfine states of 87Rb condensates, we show that there are two experimentally relevant sta-
tionary state configurations: the one in which the components form a dark-bright symbiotic pair
(the ground state of the system), and the one in which the components are segregated (first excited
state). For each of these two configurations, we show numerically that far from resonances the
Faraday waves excited in the two components are of similar periods, emerge simultaneously, and do
not impact the dynamics of the bulk of the condensate. We derive analytically the period of the
Faraday waves using a variational treatment of the coupled Gross-Pitaevskii equations combined
with a Mathieu-type analysis for the selection mechanism of the excited waves. Finally, we show
that for a modulation frequency close to twice that of the radial trapping, the emergent surface
waves fade out in favor of a forceful collective mode that turns the two condensate components
miscible.

PACS numbers: 03.75.Kk, 47.54.-r, 67.85.Fg, 05.45.-a

I. INTRODUCTION

The excitation of surface waves through parametric
resonances is one of the oldest pattern-forming processes
that goes back to Ernst Chladni’s “beautiful series of
forms assumed by sand, fillings, or other grains when
lying upon vibrating plates” that “are so striking as to
be recalled to the minds of those who have seen them
by the slightest reference”, Hans Christian Ørsted’s ex-
periments with lycopodium light powders, and Michael
Faraday’s “crispations” seen in “fluids in contact with vi-
brating surfaces” [1]. The prototypical example of para-
metric wave excitation is that of a shallow disc of a liquid
rigidly oscillated in the vertical direction. In this setting
the acceleration periodically modulates the effective grav-
ity and for drives of sufficiently large amplitudes a surface
wave instability occurs with frequency one half that of the
drive [2]. Such surface waves are termed Faraday waves,
and the corresponding pattern-forming phenomenon has
been seen in numerous Newtonian and non-Newtonian
fluids, colloidal suspensions, ferromagnetic bodies, and,
more recently, in superfluids.

After a series of inceptive studies on extended paramet-
ric resonances in confined superfluids [3–8], the experi-
mental observation of Faraday waves in 4He cells [9] and
87Rb cigar-shaped Bose-Einstein condensates (BECs)
[10] catalyzed the interest in the nonlinear dynamics of
parametrically-driven ultracold gases [11]. In addition
to the ever-present collective oscillation modes of BECs
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[12], their parametric driving can generate soundlike den-
sity waves, which are analogous to Faraday surface waves.
BEC systems also exhibit resonances, and when the driv-
ing frequency is close to one of them, forceful resonant
waves can develop, eventually taking over the dynamics
of the system. Furthermore, inherent nonlinearity of such
systems brings about a diverse set of related dynamical
phenomena and leads to their complex interplay.

Surveying the recent literature for bosonic systems
one notices the theoretical investigations into the soli-
ton management in periodic systems [13, 14], the emer-
gence and suppression of Faraday patterns [15–19], the
parametric excitation of resonances [20] and “scars” in
BECs [21], spatially and temporally driven atomic in-
teractions in optical lattices [22, 23], quantized vortices
induced by spatio-temporally modulated interaction [24],
stability and decay of Bloch oscillations in the presence
of time-dependent nonlinearity [25, 26], and, quite in-
terestingly, the removal of excitations in BECs subject
to time-dependent periodic potentials [27]. On a related
topic, the formation of density waves has been predicted
for expanding condensates [28, 29] and the spontaneous
formation of density waves has been recently reported
for antiferromagnetic BECs [30]. Faraday waves have
been analyzed in detail also in superfluid fermionic gases
[31, 32] and it has been shown that the collective modes
of 1D fermionic systems can be amplified by parametric
resonances to the extent of observing a clear spin-charge
separation [33].

Parametric resonances in BECs are usually achieved
through periodic modulation of the frequency of the trap-
ping potential, as is the case in Ref. [10], but the re-
cent experiments on the collective modes of a trapped
7Li BEC through periodic modulation of the scattering
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length [34] have opened a new direction for both experi-
mental and theoretical [35] investigations. Simultaneous
modulations of the strength of the confining potential and
of the scattering length, in particular, are largely unex-
plored. They can give rise to new recipes for pattern
formation and, possibly, to new types of patterns.
In this paper we study the excitation of waves through

periodic modulations of the radial confinement of binary
non-miscible BECs and show that these condensates ex-
hibit a Faraday instability similar to that seen in one-
component systems. Considering the hyperfine states
of realistic 87Rb condensates which can be readily pro-
duced [36], such as |1,−1〉, |2, 0〉 and |1,−1〉, |2, 1〉 pairs,
we show that there are two distinct experimentally rel-
evant stationary configurations: one where the compo-
nents form a dark-bright symbiotic pair, which is the
ground state of the system, and one where the compo-
nents are segregated, which is the first excited state of
the system. Far from resonances we show numerically
for each configuration that the excited waves are of sim-
ilar periods and emerge simultaneously, and analytically
find the dispersion relation using a variational treatment
in conjunction with a Mathieu-type analysis. Finally, the
resonant excitation of collective modes is analyzed in de-
tail.
The rest of the paper is structured as follows. In

Sec. II we describe the numerical treatment of the cou-
pled Gross-Pitaevskii equations (GPEs) that describe the
T = 0 dynamics of the condensate and introduce the two
types of stationary configurations, while in Sec. III we de-
rive the corresponding variational equations and the as-
sociated dispersion relations. In Sec. IV we present our
numerical and analytical results for realistic 87Rb con-
densates, along with suggestions for future experiments.
The last section contains conclusions and outlook.

II. STATIONARY STATES

The dynamics of binary condensates at T = 0 is
governed by the time-dependent version of the coupled
GPEs, which read [37]

i
∂ψj

∂t
= −1

2
∆ψj + V (r, t)ψj +NjUj |ψj |2 ψj

+N3−jŨ |ψ3−j |2 ψj , (1)

where j ∈ {1, 2}, Nj is the fixed number of atoms in

each component, Uj = 4πaj , Ũ = 4πã, with aj being the
intra-component scattering lengths, while ã is the inter-
component scattering length. Here we use numerical val-
ues similar to the experimental ones from Refs. [38–40],

a1 = 100.4 a0 , a2 = 98.98 a0 , ã = a1 , (2)

where a0 is the Bohr radius. Small variations in scat-
tering lengths yield similar results, but we have cho-
sen these particular values since they correspond to a
clearly non-miscible configuration at the mean-field level,

thereby emphasizing the forcefulness of the miscibility
transition, which represents one of our main motivations,
as we will see in Sec. IV. For simplicity, we use natural
units h̄ = m = 1 throughout the paper, and component
normalization

∫

dr |ψj(r, t)|2 = 1 . (3)

The stationary states of binary Bose-Einstein conden-
sates are obtained by solving the time-independent ver-
sion of Eqs. (1), in which terms with time derivatives
of wave functions are replaced by the terms containing
chemical potentials µj of components,

− 1

2
∆ψj + V (r, t)ψj +NjUj |ψj |2 ψj

+N3−jŨ |ψ3−j |2 ψj = µjψj . (4)

In this paper we consider the two hyperfine states of 87Rb
(hereafter referred to as states A and B) in an external
potential of the form

V (r, t) =
1

2
Ω2

ρ(t)ρ
2 +

1

2
Ω2

zz
2, (5)

where ρ2 = x2+y2, such that the system is cylindrically-
symmetric, i.e. ψj(r, t) ≡ ψj(ρ, z, t), and GPEs are effec-
tively two-dimensional. We also assume that the system
is highly elongated and strongly confined in the radial
direction, Ωρ(t) ≫ Ωz. The above time-dependent sys-
tem of GPEs (1), as well as its time-independent coun-
terpart Eq. (4), can be solved numerically using various
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FIG. 1: (Color online) Typical imaginary-time propagation of
the total energy for a two-component condensate system with
N1 = 2.5 · 105 atoms in the state A and N2 = 1.25 · 105 in
the state B, Ωρ = 160× 2π Hz, Ωz = 7× 2π Hz. The dashed
black curve corresponds to the evolution from initial wave
functions set to two identical Gaussians, which immediately
yields the ground state, while the full red curve corresponds
to evolution from the initial wave functions set to two well-
separated Gaussians, yielding the first excited state of the
system, which eventually decays to the ground state.
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approaches [41–45]. Here we choose the efficient split-
step Crank-Nicolson approach developed by Adhikari and
Muruganandam in Ref. [46]. We have implemented this
algorithm in the C programming language, and use it for
all numerical simulations presented here.
Binary condensates exhibit a wide range of interest-

ing and experimentally relevant configurations, which
go from the one-dimensional soliton pairs tabulated in
Ref. [47], to the more exotic two-dimensional vortex-
lattices [48], and vortex-bright-soliton structures [49].
From the mean-field theory it follows that binary con-
densates are miscible if the condition Ũ <

√
U1U2 is sat-

isfied [50]. For the values from Eq. (2) this condition is
not satisfied, and the system is non-miscible [38].
The stationary states are computed numerically by

imaginary-time propagation until we achieve the conver-
gence of wave functions and physical quantities of the sys-
tem, chemical potentials and mean-square radii of com-
ponents, and the total system energy. Fig. 1 illustrates
the results obtained using this approach for different ini-
tial conditions. It shows total energy of the system as
a function of the imaginary time. Using the various ini-
tial conditions, we were able to numerically calculate two
relevant stationary configurations: the one in which the
components form a dark-bright symbiotic pair (ground
state), and the one in which the components are spa-
tially well segregated. From Fig. 1 we can see that the
segregated state is a first excited state of the system,
as it decays to the ground state after sufficiently long
imaginary-time propagation.
The first type of stationary solutions supported by

the GPEs, the ground state, consists of a symmetric,
Thomas-Fermi-type density profile with a hole in the cen-
ter in one component, and a well-localized density peak
positioned in the center of the trap in the other compo-
nent. Fig. 2 shows typical longitudinal density profiles

nj(z) =

∫ ∞

0

dρ 2πρ |ψj(ρ, z)|2 (6)

of the two components for the ground state, obtained
through the imaginary-time propagation, starting from
the two identical Gaussian initial states.
We note the apparent similarity of the obtained dark-

bright symbiotic solutions and the dark-bright soliton
molecules, known to exist in homogenous systems. These
soliton molecules were originally predicted in a nonlinear
optics setting [51, 52] and were first observed in pho-
torefractive crystals [53]. Following their exposure to the
BEC community [54], they were observed experimentally
using the 87Rb condensates [55], and were subsequently
addressed theoretically in Refs. [39, 56, 57]. In homo-
geneous condensates the dark component effectively acts
as a trapping potential for the bright component through
the nonlinear interaction, and this mechanism is well pre-
served in inhomogeneous systems, albeit the dark compo-
nent is cut-off away from the center of the trap and the
bright component tends to be more narrow due to the
additional confinement by the trap. However, symbiotic
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FIG. 2: (Color online) Typical longitudinal density profiles
for a condensate in the ground state (dark-bright symbiotic
pair). The parameters are the same as in Fig. 1, the full red
curve shows the density profile for atoms in the state A, the
dashed black line for atoms in the state B.
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FIG. 3: (Color online) Typical longitudinal density profiles
for a condensate in the first excited state (segregated state).
The parameters are the same as in Fig. 1, the full red curve
shows the density profile for atoms in the state A, the dashed
black line for atoms in the state B.

solutions from Fig. 2 do not represent inhomogeneous
counterparts of soliton molecules, since they are purely
real, and the first component does not exhibit a jump of
π in the phase between its left and right part.
The second type of stationary solutions supported by

the GPEs, the first excited state, is presented in Fig. 3.
It consists of two opposing, asymmetric Thomas-Fermi-
type density profiles, with the negligible overlap. This
segregation of the components stems from the repulsive
character of the interaction and the non-miscible nature
of the considered binary condensate. Naturally, there ex-
ist a large number of further excited states of the system
that can be calculated numerically as well, but we focus
only on the two relevant states, shown in Figs. 2 and 3.
Experimentally, such states can readily be realized us-
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ing current technology. While our analysis considers
elongated traps approaching a one-dimensional limit, we
note that the state in Fig. 2 has already been observed
in three-dimensional traps where a magnetically trapped
BEC of 87Rb atoms was prepared in a mixture of the
|1,−1〉 and |2, 1〉 hyperfine states and was observed to
assume a ball-shell structure [58, 59]. By introducing dif-
ferential trap shifts for the two components as in Ref. [58],
the segregated state in Fig. 3 can readily be generated as
well. Alternatively, optical traps can be employed to con-
fine atoms in a state independent way, and an additional
magnetic gradient can be used to separate components of
a mixture. Using a miscible mixture, this phase separa-
tion in an optical trap has been generated e.g. in Ref. [40]
and can also be extended to optical lattice systems [60].
Using a microwave sweep in a high-bias magnetic field,
the miscible mixture in the latter experiments can be
converted into an immiscible mixture by changing the
hyperfine state of one of the components.
At the end, let us also note that the stationary char-

acter of the two numerically calculated states presented
here was cross-checked by performing a real-time propa-
gation for long time intervals (much longer than those
considered in the rest of the paper). While in the
imaginary-time propagation the first excited state even-
tually decays to the ground state, when real-time prop-
agation is performed both stationary states are found to
be stable for all practical purposes.

III. VARIATIONAL TREATMENT

In this section we develop variational analytic ap-
proach suitable for study of the emergence and char-
acterization of Faraday patterns in non-miscible binary
condensates, induced by harmonic modulation of the ra-
dial trapping frequency. For each of the two stationary
states calculated in Sec. II, we propose a suitable vari-
ational ansatz for component wave functions, approxi-
mately solve the ensuing equations, and analytically de-
rive expressions for periods of Faraday waves induced
far from resonances. The obtained analytical results are
compared with the numerical results in Sec. IV.

A. Symbiotic pair state

To construct a suitable variational ansatz for compo-
nent wave functions in the case of the symbiotic pair
state, we consider an equivalent one-component scenario,
in which the bright state ψ2 evolves in the combined
effective field created by the dark state ψ1 and by the
trapping potential. To further simplify the problem, in
this subsection we will also assume that the values of
three scattering lengths from Eq. (2) are equal, namely

a1 = a2 = ã ≡ a = 100.4 a0, or U1 = U2 = Ũ ≡ U , which
is justified since the values measured experimentally are
quite close [38].

In this setting, the effective one-component Lagrangian
density for the bright state ψ2 is given by

L2(ρ, z, t) =
i

2

(

ψ2

∂ψ∗
2

∂t
− ψ∗

2

∂ψ2

∂t

)

+
1

2
|∇ψ2|2

+V (ρ, z, t) |ψ2|2 +
UN2

2
|ψ2|4

+UN1 |ψ1|2 |ψ2|2 , (7)

where we have chosen the following ansätze for compo-
nent wave functions:

ψ1(ρ, z, t) = N1 exp

(

− ρ2

2w2
ρ(t)

+ iρ2α2(t)

)

×
[

1− exp

(

− z2

2w2
z

)]

, (8)

ψ2(ρ, z, t) = N2 exp

(

− ρ2

2w2
ρ(t)

− z2

2w2
z

+ iρ2α2(t)

)

×
[

1 + (u(t) + iv(t)) cos kz
]

, (9)

with straightforward interpretation for the variational
parameters: the radial and the longitudinal bright state
widths wρ(t) and wz, the phase α2(t), and the complex
amplitude u(t) + iv(t) of the Faraday wave in the bright
component, with the period 2π/k. Note that, in order
to keep the analytics reasonably simple and tractable,
we assume that the longitudinal condensate width wz is
constant, and include the surface wave only in the bright
component, in a manner similar as in Ref. [61–63]. As
the role of the dark component is mainly that of an addi-
tional trapping potential, these simplification of ansätze
have little impact on the final results. The normalization
factors Nj are calculated from normalization conditions

∫ L

−L

dz

∫ ∞

0

dρ 2πρ |ψ1(ρ, z, t)|2 = 1 , (10)

∫ ∞

−∞

dz

∫ ∞

0

dρ 2πρ |ψ2(ρ, z, t)|2 = 1 , (11)

where 2L is the longitudinal spatial extent of the dark
state component, obtained by solving the stationary sys-
tem of GPEs and assumed to be constant.
After inserting the ansätze (8) and (9) into the La-

grangian density (7), we calculate the Lagrangian and
derive the following variational equations for the param-
eter functions wρ(t), α(t), u(t) and v(t):

ẇρ = 2wρα, (12)

α̇ =
1

2w4
ρ

− Ω2
ρ

2
− 2α2

+
U
(

3
√
8LN2 + gα

√
πwz

)

24π
3

2w4
ρwz

[

2L−
(√

8− 1
)√

πwz

] , (13)

u̇ =
k2v

2
, (14)

v̇ = −k
2u

2
− UN2u√

2π
3

2wzw2
ρ

, (15)
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where gα = (12+6
√
2− 8

√
6)N1− 3(4−

√
2)N2. In addi-

tion to these ordinary differential equations, we have an
algebraic equation for wz , namely

0 = 1 +

(

9

4
−
√
2

)

πw2
z

L2
− (2

√
2− 1)

√
πwz

L
(16)

− UwzN2π
− 3

2

w2
ρ0

(

Ω2

zw
2
z − 1

)

[

2
5

2 − (16− 2
5

2 )
√
πwz

L
− πgzw

2
z

3N2L2

]

,

where gz = 2(9
√
2− 16

√
3+4

√
6+ 6)N1 − 3(9

√
2− 8)N2

and wρ0 = wρ(0). The tacit assumption that the conden-
sate is of constant longitudinal extent 2L will be further
justified in the next section, where we present the full
numerical results.
Let us first emphasize that, as will be shown later nu-

merically, the dynamics of the bulk of the condensate, in
the first approximation, is not impacted by that of the
surface wave. Eqs. (12) and (13) are, in fact, similar to
those derived in Ref. [64] for the collective dynamics of
low-density one-component condensates, while Eqs. (14)
and (15) resemble those derived in Refs. [15, 17] for Fara-
day waves in low- and high-density one-component con-
densates. Second, we stress that for a modulated radial
trapping Ωρ(t) = Ωρ0 · (1 + ǫ sinωt), Eqs. (12) and (13)
exhibit a series of parametric resonances for ω = Ωρ0

(self-resonance) and ω = 2Ωρ0/n
2, where n is an inte-

ger [3]. The widest resonance is that at ω = 2Ωρ0 (for
n = 1), followed by the self-resonance at ω = Ωρ0, which
has been evidenced in Ref. [10] for one-component 87Rb
condensates. The other (n ≥ 2) resonances are very nar-
row and are of little experimental interest, since for such
low frequencies the excited waves have periods compara-
ble to the longitudinal extent of the condensate and are
therefore difficult to observe.
Finally, let us note that, unlike in one-component con-

densates, where Faraday waves emerge rapidly enough
as to hide the resonant behavior at ω = 2Ωρ0 [10], in
two-component systems the forceful resonant behavior is
dominant, as we will show numerically in Sec. IV.
Far from resonances we can approximately calculate

the radial width as

wρ ≈ Ω
− 1

2

ρ

(

1 +
U(3

√
8LN2 + gα

√
πwz)

12π
3

2wz

[

2L−
(√

8− 1
)√

πwz

]

)
1

4

,

(17)
which stems from Eqs. (12) and (13) by neglecting ẅρ(t),
and casts the equation for u(t) into the form

ü(τ) + u(τ) [a(k, ω) + ǫb (k, ω) sin 2τ ] = 0 , (18)

A dimensionless time τ is introduced as ωt = 2τ , and

a(k, ω) =
k4

ω2
+
k2

ω2
Λsym , (19)

b(k, ω) =
k2

ω2
Λsym , (20)

Λsym =
3
√
8gabUN2Ωρ0

√

3
√
8ULN2wz +

√
πw2

z (gαU + 12πgab)
,(21)

gab = 2L− (2
√
2− 1)

√
πwz . (22)

For small positive values of the radial modulation am-
plitude ǫ and positive values of the function b(k, ω),
Eq. (18) has solutions of the form exp(±iµτ) sin√aτ
and exp(±iµτ) cos√aτ , where Im[µ] consists of a series
of lobes positioned around the solution of the equation
a(k, ω) = n2, with n being an integer [65]. The lobe cen-
tered around a(k, ω) = 1 is the largest, and it yields the
most unstable solutions [15, 17], determined by

kF,sym =

√

−Λsym

2
+

√

Λ2
sym

4
+ ω2 . (23)

As these solutions have a frequency of ω/2, half that
of the parametric drive, they are usually referred to as
Faraday waves in honor of Faraday’s classic study [1].
Close to a resonance [66], the approximation used

above for wρ(t) breaks down, and one cannot generally
construct the explicit equation for u(t). We know, how-
ever, that the instabilities appear due to the resonant
energy transfer between the radial mode and the surface
wave, which entails that wρ(t) and u(t) are of equal fre-
quency. For small values of the modulation amplitude ǫ
this requires that the condition a(k, ω) = 22 is satisfied.

B. Segregated state

To consider the case of a segregated excited state, we
build the variational equations starting from the habitual
Gross-Pitaevskii Lagrangian density [37, 64], written for
a two-component condensate in the form:

L(ρ, z, t) =
∑

j=1,2

[

i

2

(

ψj

∂ψ∗
j

∂t
− ψ∗

j

∂ψj

∂t

)

+
1

2
|∇ψj |2

+V (ρ, z, t) |ψj |2 +
UjNj

2
|ψj |4

]

Nj

+ŨN1N2 |ψ1|2 |ψ1|2 . (24)

To variationally describe the wave functions of two BEC
components, we use cylindrically-symmetric ansätze tai-
lored around the usual Gaussian envelopes [64] that de-
scribe the bulk of the condensate, to which we graft a
surface wave [61–63],

ψj(ρ, z, t) = Nj exp

(

− ρ2

2w2
ρ(t)

− z2

2w2
z

+ iρ2α2(t)

)

× [1 + (u(t) + iv(t)) cos kz] θ
(

(−1)jz
)

, (25)

where θ represents Heaviside step function, and normal-
ization factors are determined from

∫ ∞

−∞

dz

∫ ∞

0

dρ 2πρ |ψj(ρ, z, t)|2 = 1 . (26)

As far as the longitudinal components are concerned,
the trial wave functions consist of two opposing half-
Gaussians of equal widths and amplitudes, positioned in
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the center of the trap. As there is no overlap between
the two components and the period of the excited wave
is smaller than the longitudinal extent of the condensate,
for small-amplitude waves the Euler-Lagrange equations
can be written as

ẇρ = 2wρα , (27)

α̇ =
1

2w4
ρ

− Ω2
ρ

2
− 2α2 +

g√
8π3/2Nw4

ρwz

, (28)

u̇ =
k2v

2
, (29)

v̇ = −k
2u

2
− gu√

8π3/2Nw2
ρwz

, (30)

where g = N2
1U1 + N2

2U2 and N = N1 + N2. As in the
previous subsection, in writing the equations above we
have assumed that the condensate has a frozen longitu-
dinal dynamics (apart from the dynamics of the grafted
wave), and that the corresponding width wz is constant.
Its value is determined from the algebraic equation

1

2w4
z

− Ω2
z

2
+

g√
8π3/2w2

ρ0w
3
z

= 0 , (31)

where wρ0 = wρ(0). As in the case of symbiotic states, we
will consider modulation of the radial trapping frequency
of the form Ωρ(t) = Ωρ0 ·(1+ǫ sinωt). Following a similar
reasoning, we find that the system again exhibits a series
of parametric resonances: a self-resonance at ω = Ωρ0,
and series of resonances for ω = 2Ωρ0/n

2, where n is
an integer. As before, the strongest resonance is that at
ω = 2Ωρ0.
Far from resonances, we can approximate the radial

width as

wρ ≈ Ω
− 1

2

ρ

[

1 +
g√

2π3/2Nwz

]1/4

, (32)

while Eqs. (29) and (30) can then be conveniently recast
in the form of a Mathieu equation,

ü(τ) + u(τ) [a(k, ω) + ǫb (k, ω) sin 2τ ] = 0 , (33)

where the time τ is introduced as ωt = 2τ ,

a(k, ω) =
k4

ω2
+
k2

ω2
Λseg , (34)

b(k, ω) =
k2

ω2
Λseg , (35)

and

Λseg =
4gΩρ0

√√
2π

3

2Nwzg + 2π3N2w2
z

, (36)

As before, the most unstable solutions correspond to
a(k, ω) = 1, and are determined by

kF,seg =

√

−Λseg

2
+

√

Λ2
seg

4
+ ω2 . (37)

Close to resonances, following a similar reasoning as in
the case of symbiotic pair solution, we conclude that the
radial mode wr(t) and the surface wave u(t) are of equal
frequency, which, for small values of the modulation am-
plitude ǫ, is determined by solving a(k, ω) = 22.

IV. RESULTS AND DISCUSSION

To investigate the emergence of Faraday waves, we
solve numerically the coupled set of time-dependent
GPEs (1) for the exact values of scattering lengths from
Eq.(2) and study the dynamics of the longitudinal den-
sity profiles of BEC components,

nj(z, t) =

∫ ∞

0

dρ 2πρ |ψj(ρ, z, t)|2 , (38)

as well as their Fourier spectra. Our main result is that,
far from resonances, Faraday waves of similar periods ap-
pear simultaneously in both BEC components for both
considered initial configurations (symbiotic pair state,
segregated excited state), and that these waves have al-
most no effect on the dynamics of the bulk of the con-
densate (surface waves represent only a small perturba-
tion of the stationary state). For the self-resonance at
ω = Ωρ0, we show that surface waves appear consider-
ably faster than the Faraday ones, and that, similar to
the one-component case reported in Ref. [10], such reso-
nant waves have smaller period than the Faraday waves.
To understand this latter feature, we recall from the pre-
vious section that the instability now sets in due to the
resonant energy transfer between the radial mode and the
surface wave, which changes the frequency of the surface
wave and consequently the observed period. Finally, we
numerically study the forceful resonant dynamics of the
system at ω = 2Ωρ0, which has not been seen previously
in one-component condensates [10]. This strong resonant
behavior is found to facilitate the dynamical transition
of the system from non-miscible to the miscible state.

A. Symbiotic pair states

In Fig. 4 we show the emergence of Faraday waves in
real-time dynamics of a two-component condensate with
N1 = 2.5 · 105 atoms in the state A and N2 = 1.25 ·
105 atoms in the state B, starting from a symbiotic pair
ground state configuration. The magnetic trap has the
parameters {Ωρ0,Ωz} = {160× 2π Hz, 7 × 2π Hz}, and
we consider the modulation frequency ω = 250× 2π Hz
to be far from resonances. The Faraday waves are visible
after 150 ms, and we show in Fig. 5 the Fourier spectrum
of density profiles of the condensate at t = 200 ms. The
spectrum exhibits several peaks, and the first two peaks,
k1 and k2, common for both components, are related to
the geometry of the system. The first peak corresponds
to the period ℓ1 = 2π/k1 = 81.5µm, the longitudinal
extent of the system, while the second one corresponds
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FIG. 4: Emergence of Faraday waves in a two-component
BEC system in the real-time evolution of longitudinal density
profiles: (a) n1(z, t) and (b) n2(z, t). The system is initially in
the symbiotic pair state, and is modulated with the amplitude
ǫ = 0.1 and frequency ω = 250× 2π Hz. The system contains
N1 = 2.5 · 105 atoms in the state A and N2 = 1.25 · 105 atoms
in the state B, confined by the trap with Ωρ0 = 160 × 2π Hz
and Ωz = 7× 2π Hz.
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FIG. 5: (Color online) Fast Fourier transform of density pro-
files from Fig. 4 for two condensate components at t = 200 ms.

to the period ℓ2 = 2π/k2 = 21.7µm, the extent of the

FIG. 6: Emergence of resonant waves in a two-component
BEC system in the real-time evolution of longitudinal density
profiles: (a) n1(z, t) and (b) n2(z, t). The system is initially
in the symbiotic pair ground state, and is modulated with
the self-resonant frequency ω = Ωρ0 = 160 × 2π Hz; other
parameters as in Fig. 4.

central dip in the fist component (or, equivalently, the
extent of the second component). The periods of Faraday
waves are determined by the peaks k3,j , and have very
close values, ℓ3,1 = 13.0µm and ℓ3,2 = 12.5µm. The
dispersion relation (23) derived in Sec. III A indicates a
period of 12.0, µm, which is in excellent agreement with
the numerical results.

This demonstrates that the variational ansätze from
Sec. III A were well crafted. The good agreement is also
partly due to our normalization of the dark component,
where we have used the longitudinal extent of the conden-
sate L = ℓ1, obtained from the stationary solution of the
full set of GPEs. Please note that the emergence of the
Faraday waves does not impact the bulk of the conden-
sate, and that its longitudinal extent is constant, which
fully justifies our assumption in the variational model.

In Fig. 6 we show the resonant dynamics of the con-
densate for a self-resonance, ω = Ωρ0 = 160 × 2π Hz.
In this case our numerical simulations indicate a narrow
resonance where the excited surface waves do not im-
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FIG. 7: Emergence of resonant waves in a two-component BEC system in the real-time evolution of longitudinal density profiles:
n1(z, t) (left column) and n2(z, t) (right column). The system is initially in the symbiotic pair ground state, and is modulated
with the frequencies: ω = 300× 2π Hz in (a) and (b); ω = 2Ωρ0 = 320× 2π Hz in (c) and (d); ω = 340× 2π Hz in (e) and (f).
Other parameters are the same as in Fig. 4.

pact the dynamics of the bulk of the condensate. The
resonant waves develop faster than the Faraday waves,
and already after 70 ms are clearly visible. However, in
Fig. 7 we see that for a second resonance at ω ≈ 2Ωρ0,
the excited surface waves appear even much earlier, after
only 25 ms, but are quite short-lived, and the collective
dynamics of the two components then takes over. This
figure also illustrates that the second resonance is very
broad, and covers the interval wider than 40 × 2π Hz,

centered at 2Ωρ0 = 320× 2π Hz.

We note, in particular, that precisely at the second
resonance the two components explode into one another
(due to the resonant energy transfer), thereby becoming
effectively miscible. This resonant transition to miscibil-
ity is specific to two-component systems, and has also
been recently reported in binary dipolar BECs [67]. Our
analytical treatment of the surface waves indicates a pe-
riod of 9.3µm for the self-resonance, while the full GPEs
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FIG. 8: Emergence of Faraday (a, b) and resonant (c, d) waves in a two-component BEC system in the real-time evolution of
longitudinal density profiles: n1(z, t) (left column) and n2(z, t) (right column). The system is initially in the segregated excited
state, and is modulated with the amplitude ǫ = 0.1 and frequencies: ω = 250× 2π Hz in (a) and (b); ω = Ωρ0 = 160× 2π Hz in
(c) and (d). The system contains N1 = 2.5 · 105 atoms in the state A and N2 = 1.25 · 105 atoms in the state B, and is confined
by the trap with Ωρ0 = 160× 2π Hz and Ωz = 7× 2π Hz.

numerically yield periods of 9.3µm for the first com-
ponent and 9.0µm for the second component, which is
again an excellent agreement. For the broad resonance at
ω ≈ 2Ωρ0, the variational treatment gives 4.9µm, while
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FIG. 9: (Color online) Fast Fourier transform of density pro-
files from Fig. 8 for two condensate components at t = 200 ms.

numerically we find periods of 9.6µm for both compo-
nents. Here the agreement is only qualitative, due to a
violent dynamics observed numerically, which cannot be
fully captured by simple ansätze used in Sec. III A.
As symbiotic states are routinely obtained in 87Rb con-

densates [39, 55], the observation of the Faraday waves is
definitely within the current experimental capabilities, as
is the observation of self-resonant waves at ω = Ωρ0. The
observation of resonant waves for ω close to the second
resonance 2Ωρ0 seems, however, unlikely, as these waves
quickly fade out in favor of a forceful resonant dynamics
that takes the condensate into the miscible regime and
can, for longer timescales, turn the condensate unstable.

B. Segregated states

In Figs. 8a and 8b and we show the formation of Fara-
day waves at ω = 250 × 2π Hz for a segregated initial
state using the same experimental setup as in the previ-
ous case. The waves again appear after roughly 150 ms
and we show in Fig. 9 the Fourier spectrum of the longi-
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FIG. 10: Emergence of resonant waves in a two-component BEC system in the real-time evolution of longitudinal density
profiles: n1(z, t) (left column) and n2(z, t) (right column). The system is initially in the segregated excited state, and is
modulated with the frequencies: ω = 300 × 2π Hz in (a) and (b); ω = 2Ωρ0 = 320 × 2π Hz in (c) and (d); ω = 340× 2π Hz in
(e) and (f). Other parameters are the same as in Fig. 8.

tudinal density profile at t = 200 ms. The spectrum’s two
peaks k1,1 and k1,2 correspond to longitudinal extents of
components, 81.5µm and 54.3µm, while the peak k2 cor-
responds to the width of the interface area between the
components of 21.7µm.

Periods of the Faraday waves are determined by the
peaks k3,1 and k3,2, and have the values 11.6µm for the
first and 13.0µm for the second component. The dis-

persion relation derived in Sec. III B indicates a period
of 16.8µm, which overestimates the previous result by
roughly 30% due to several reasons: the ansätze we use
in Sec. III B for two components are symmetric around
z = 0, they have the same normalization, and also they
exhibit the Gaussian exponential cut-off away from the
center of the trap. From Fig. 3 we already see that
these are simplifications made only to ensure analytical
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tractability of the variational calculation. We also stress
that both components are in the Thomas-Fermi regime,
hence their wave functions are well-localized and show
a distinct quasi-singular cut-off at borders of the cloud,
not the Gaussian-type tail. However, even with these
simplifications, the variational approach is able to give
reasonable estimate for the period of Faraday waves.
We also numerically study resonant dynamics of the

two-component BEC system for the self-resonance at
ω = Ωρ0. In Figs. 8c and 8d we show real-time evolu-
tion of density profiles for both components. The reso-
nance is relatively narrow and the excited surface wave
do not impact the overall dynamics of the condensate.
The resonant surface waves appear after around 80 ms,
and have the period of 11.2µm in the first and 12.5µm
in the second component, while the variational approach,
Eq. (37), gives the period of 13.1µm. The agreement is
quite good, but only coincidental, since we know that the
ansätze used in Sec. III B are oversimplified, and that we
cannot expect more than an order of magnitude agree-
ment.
In the case of a second resonance at ω = 2Ωρ0, the

excited surface waves fade out in favor of the forceful
resonant dynamics that turns the two components mis-
cible. The resonant waves appear already after around
25 ms, much faster than for the self-resonance. As in the
case of the symbiotic pair state, the second resonance is
much broader than the self-resonance, with the width of
more than 40×2π Hz, as illustrated in Fig. 10. Our ana-
lytical treatment of the surface waves indicates a period
of 6.6µm, while the Fourier analysis of the full numeri-
cal solution of GPEs yield periods of 10.2µm in the first
and 9.6µm in the second component. As expected, the
variational treatment gives a fair estimate of the period
of resonant surface waves.

V. CONCLUSIONS

We have shown the emergence of Faraday waves in bi-
nary non-miscible BECs subject to periodic modulations
of the transverse confinement. Considering the |1,−1〉
and |2, 1〉 hyperfine states of realistic 87Rb condensates,
we have shown that there are two types of experimen-
tally relevant stationary configurations: a symbiotic pair
ground state, where one component is trapped by the
other, and a configuration where the components are well
segregated, which represents a first excited state of the
system. For both types of configurations we have shown
by extensive numerical study that the surface waves in
the two components emerge simultaneously, are of simi-
lar periods and do not impact the dynamics of the bulk
of condensate far from resonances. We have derived ana-
lytically periods of the excited surface waves using first a
variational treatment of the full system of coupled GPEs
that reduced the dynamics of the condensate to a set of
coupled ordinary differential equations, and then using a
Mathieu-type analysis of these equations we have deter-

mined the most unstable solutions. The obtained ana-
lytical results for periods of surface waves are shown to
give excellent estimates by comparison with the Fourier
analysis of numerical solutions of the full set of GPEs.
The resonant dynamics seen for modulations equal to
the radial trapping frequency (self-resonance), as well as
to twice this value (second resonance) were investigated
numerically, and we have found that the emergent res-
onant surface waves appear much faster than the Fara-
day waves. Using the variational approach developed in
Sec. III, the periods of resonant surface waves can be
also estimated, and are found to be in reasonable agree-
ment with the numerical results. In the case of a second
resonance, the emergent surface waves for both types of
initial configurations are found to fade out in favor of a
forceful resonant dynamics that turns the binary conden-
sate miscible. This is an interesting phenomenon, and we
believe that GPE framework captures its dynamics quite
well, similarly to e.g. Ref. [68], where the condensate was
split into two separated regions and then the collisional
dynamics of the two halves was observed and found to
be in excellent agreement with GPE predictions.

Extending the present investigation to experimental
setups with anisotropic transverse confinement (such as
the one in Ref. [39]) presents one of interesting venues
for future studies. As fully three-dimensional simulations
are extremely time-consuming, a natural first step would
be to extend the existing (cylindrically symmetric) non-
polynomial Schrödinger equations [69, 70] to cover the
dynamics of binary BECs subject to anisotropic trans-
verse confinement. Also in this direction the study of pre-
dominantly two-dimensional (pancake-shaped) conden-
sates has the potential to uncover a rich variety of pat-
terns, and one could even expect the formation of spatio-
temporal chaos in such systems. Finally, another natural
extension of this work would be to consider parametric
resonances and the ensuing Faraday waves in miscible
condensates. In this setting the dynamics of the waves
in the two components can be mapped variationally onto
a set of coupled Mathieu equations whose most unstable
solutions are, however, not known analytically.
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Frantzeskakis, and P. G. Kevrekidis, Nonlinearity 21,
R139 (2008).

[12] X.-J. Liu, H. Hu, A. Minguzzi, and M. P. Tosi, Phys.
Rev. A 69, 043605 (2004).

[13] B. Malomed, Soliton Management in Periodic Systems
(Springer, New York, 2006).
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